首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human diploid cells cultured in vitro provide an excellent model system for the study of aging. In this study, we examined the formation and rejoining of DNA single-strand breaks (SSBs) induced by X-rays in human lung diploid fibroblasts during senescence, by using a modified alkaline elution method. For detecting the formation and rejoining of DNA SSBs, conventional [14C]thymidine (TdR)-labeling and fluorometric methods were applied to dividing cells and to the whole cell population including non-dividing and slowly-dividing cells, respectively. We did not find any significant differences in the rejoining ability of X-ray-induced SSBs in human diploid cells at almost all population doubling levels, although only in terminally senescent cells the rejoining of SSBs seems to proceed more slowly. However, it was observed that the alkaline elution of DNA from unirradiated and X-irradiated cells seems to become faster with increasing in population doubling number, although there were no remarkable differences in the elution rates of DNA as measured by the [14C]TdR-labeling method and those measured by the fluorometric method. These results seem to suggest that the molecular size of DNA in human diploid cells in culture decreases with aging.  相似文献   

2.
Repair of UV damage in plasmid DNA by human fibroblasts   总被引:1,自引:0,他引:1  
Summary Plasmid DNA from Bacillus subtilis was introduced into monolayers of human fibroblasts by means of a modification of the calcium phosphate coprecipitation technique, comprising centrifugation of the coprecipitate onto the cells and treatment with polyethyleneglycol. The amount of DNA resistant to removal from the monolayers ranged from 10% to 15% of the input DNA. By determination of the biological activity of the plasmid DNA, re-extracted after various periods following entry into the fibroblasts and subsequently used as donor for B. subtilis protoplasts, it was shown that the activity of the plasmid DNA was gradually lost. When ultraviolet light-inactivated plasmid DNA was used as donor, reactivation of the plasmid was observed, which was completed within 2 h. The dose-dependent incorporation of [14C]-thymidine suggests that DNA repair processes were involved in reactivation of the plasmid DNA.  相似文献   

3.
4.
The effect of hypertonic salt treatment on the repair of potentially lethal damage and potentially mutagenic damage in X-irradiated asynchronous and synchronous human diploid fibroblasts (IMR91) have been studied. Resistance to 6-thioguanine was used for the mutagenic end point. When cells in late-S-phase were treated with hypertonic salt solution immediately after X-irradiation, both cell killing and mutation induction were enhanced, as compared to X-irradiation alone. This suggests that X-irradiation of cells in late S phase induces both potentially lethal damage and potentially mutagenic damage and that both are sensitive to hypertonic salt solution. When cells were allowed 2 h for repair after exposure to X-rays, both types of damage were completely repaired. Almost the same results were obtained with asynchronous cells. These results are discussed in terms of the relationship between radiation damage leading to cell lethality and mutagenesis.  相似文献   

5.
6.
Cloning efficiency and DNA strand breaks induction were compared in human diploid fibroblasts (HSBP) and chinese hamster ovary (CHO) cells treated with various metal salts. Cadmium (Cd2+), nickel (Ni2+) and chromate (Cr2O7) reduced the cloning efficiency of HSBP cells more than that of CHO cells whereas the reverse was true after treatment with mercury (Hg2+), manganese (Mn2+) and cobalt (Co2+). The effects on cloning efficiency did not consistently correlate with DNA strand breaking activity as all metals except Cr(VI) were more effective at producing DNA strand breaks in CHO cells than in human cells. The differential responses of the two cell types was shown to be only partially due to differences in cellular uptake of metals. DNA breaks induced in human cells by Hg2+ and Cr2O7 were shown most likely to be alkaline labile sites rather than true strand breaks since no damage was detected in a nick translation assay which measures the amount of free 3'-OH terminals. Damage induced by Mn2+ and Co2+, however, appeared to be comprised at least in part by true DNA strand breaks. DNA damage was also induced in HSBP cells following treatment with selenium but only in the presence of reduced glutathione. These studies indicate that DNA damage is not as major a consequence following some metal treatments in human cells as it appears to be in rodent cells. This suggests that rodent models for risk estimation of metal-induced tumorigenesis may not always be appropriate for extrapolation to humans.  相似文献   

7.
The effect of heat exposure on the repair of radiation-induced DNA damage which inhibits the ability of nuclear DNA to undergo supercoiling changes was studied using the fluorescent halo assay in thermotolerant and nonthermotolerant (normal) cells. The assay utilizes an intercalating, fluorescent dye to unwind and rewind endogenous DNA supercoils. When HeLa cells are exposed to 17.3 Gy radiation the ability of DNA to be rewound into supercoils is completely inhibited. However, the ability of DNA to rewind is 70% restored by 30 min after irradiation. Both thermotolerant and normal cells exposed to 45 degrees C for 30 min prior to irradiation had a rewinding ability intermediate between control and unheated cells, but there was no restoration of rewinding ability up to 3 h postirradiation. Thus, when irradiation immediately followed heating, there was no difference between thermotolerant and normal cells. However, when various time intervals were imposed between heating and irradiation, a difference in the ability of the cells to recover from heat-induced alterations became apparent. In normal cells after 6 h of postheat incubation the cells' ability to restore DNA supercoiling was approximately the same as that of control cells, while in thermotolerant cells only 2 h was required to repair the ability to restore supercoiling at the same rate. The rate of repair of DNA remained correlated with relative nuclear protein content as measured by fluorescein isothiocyanate staining in both thermotolerant and normal cells, indicating a possible relationship between the two.  相似文献   

8.
Several previous studies have shown that glycolipids isolated from plasma membranes of cultured cells and added to cells in culture inhibit the growth rate in a concentration-dependent fashion. In order to investigate the possible involvement of glycolipids in the growth regulation of normal cells by cell-cell contacts, we tested the effect of immobilized glycolipids, isolated from human fibroblasts, on the DNA synthesis of freshly seeded fibroblasts. Gangliosides inhibited DNA synthesis to a great extent, whereas neutral glycolipids had only a minor effect. The degree of inhibition of DNA synthesis by immobilized gangliosides depended both on the cell density of the cultures from which the gangliosides were isolated and on the pretreatment of the immobilized gangliosides: Preincubation with DMEM without FCS of immobilized gangliosides, isolated from confluent cultures, resulted in a 75% inhibition of growth rate of embryonal human lung fibroblasts (FH109) cultured on immobilized gangliosides. Under the same conditions, gangliosides from sparse cultures reduced the growth rate by about 30%. On the other hand, the degree of inhibition exerted by immobilized gangliosides isolated from confluent cultures was found to be greatly reduced by preincubation with DMEM with FCS, whereas the slight inhibition of growth rate, exerted by gangliosides from sparse cultures, was found to be reversed into a slight stimulation of growth rate after preincubation with complete medium. Concomitantly with the reduction of the inhibition of DNA synthesis, it was found that the complete medium, used for preincubation of the gangliosides, was no longer able to support DNA synthesis to the same extent as untreated complete medium. The data suggest that gangliosides bind growth-supporting factors of the serum, gangliosides isolated from sparse cultures being more potent in the binding of these molecules than gangliosides isolated from dense cultures.  相似文献   

9.
Repair response of human fibroblasts to bleomycin damage   总被引:1,自引:0,他引:1  
The ability of human fibroblasts to repair the specific types of DNA damage caused by bleomycin (BLM) was examined in whole-cell experiments. The method utilized for analysis was alkaline sucrose-gradient centrifugation of DNA. The results of these studies show that a repair pathway exists for the damage produced in DNA by bleomycin. DNA from BLM-treated cells shows a decrease in molecular weight, caused by chemical or enzymatic incision at sites of drug action. If the drug is removed, the DNA rapidly returns to high molecular weight, demonstrating reformation of damaged DNA. This repair response to BLM-damage was also confirmed in fibroblasts isolated from patients with putative DNA-repair defects. We observed that the response (to BLM) of cells from patients with Fanconi anemia was altered in that the fall in molecular weight of DNA from treated cells was not as great as that observed in other cell strains after drug treatment.  相似文献   

10.
An enzyme-sensitive site assay has been used to examine the fate of closely opposed pyrimidine dimers (bifilar enzyme-sensitive sites) in fibroblasts from individuals afflicted with various genetic disorders that confer increased cellular sensitivity to UV radiation. The disappearance of bifilar enzyme-sensitive sites was found to be normal in cells from individuals with Fanconi's anemia, Cockayne's syndrome, dyskeratosis congenita and the variant form of xeroderma pigmentosum. The rate of bifilar enzyme-sensitive site removal in XP cells assigned to complementation group C was reduced by an amount similar to that observed for the repair of isolated dimers. Our results indicate that the initiation of repair at closely opposed dimers is slow in XP-C cells but normal in all other cells examined.  相似文献   

11.
The ability of human fibroblasts to repair bleomycin-damaged DNA was examined in vivo. Repair of the specific lesions caused by bleomycin (BLM) was investigated in normal cell strains as well as those isolated from patients with apparent DNA repair defects. The diseases ataxia telangiectasia (AT), Bloom syndrome (BS), Cockayne syndrome (CS), Fanconi anemia (FA), and xeroderma pigmentosum (XP) were those selected for study. The method used for studying the repair of DNA after BLM exposure was alkaline sucrose gradient centrifugation. After exposure to BLM, a fall in the molecular weight of DNA was observed, and after drug removal the DNA reformed rapidly to high molecular weight. The fall in molecular weight upon exposure to BLM was observed in all cells examined with the exception of some XP strains. Prelabeled cells from some XP complementation groups were found to have a higher percentage of low molecular weight DNA on alkaline gradients than did normal cells. This prelabeled low molecular weight DNA disappeared upon exposure to BLM.  相似文献   

12.
The rate of DNA chain elongation in human diploid fibroblasts (IMR90) of different ages was examined by DNA fiber autoradiography and alkaline sucrose density gradient centrifugation. There was no difference in chain elongation rate in various population doubling level cells.  相似文献   

13.
14.
DNA-repair endonuclease activity in response to UV-induced DNA damage was quantified in diploid human fibroblasts after synchronizing cell cultures to selected stages of the cell cycle. Incubation of irradiated cells with aphidicolin, an inhibitor of DNA polymerases alpha and delta, delayed the sealing of repair patches and allowed estimation of rates of strand incision by the repair endonuclease. The apparent Vmax for endonucleolytic incision and Km for substrate utilization were determined by Lineweaver-Burk and Eadie-Hofstee analyses. For cells passing through G1, S or G2, Vmax for reparative incision was, respectively, 7.6, 8.4 and 8.4 breaks/10(10) Da per min, suggesting that there was little variation in incision activity during these cell-cycle phases. The Km values of 2.4-3.1 J/m2 for these cells indicate that the nucleotidyl DNA excision-repair pathway operates with maximal effectiveness after low fluences of UV that are in the shoulder region of survival curves. Fibroblasts in mitosis demonstrated a severe attenuation of reparative incision. Rates of incision were 11% of those seen in G2 cells. Disruption of nuclear structure during mitosis may reduce the effective concentration of endonuclease in the vicinity of damaged chromatin. The extreme condensation of chromatin during mitosis also may restrict the accessibility of reparative endonuclease to sites of DNA damage. Confluence-arrested fibroblasts in G0 expressed endonuclease activity with Vmax of 5.5 breaks/10(10) Da per min and a Km of 5.5 J/m2. The greater condensation of chromatin in quiescent cells may restrict the accessibility of endonuclease to dimers and so explain the elevated Km. When fibroblasts were synchronized by serum-deprivation, little variation in reparative endonuclease activity was discerned as released cells transited from early G1 through late G1 and early S. Proliferating fibroblasts in G1 were shown to express comparatively high numbers of reparative incision events in the absence of aphidicolin which was normally used to inhibit DNA polymerases and hold repair patches open. It was calculated that in G0, S and G2 phase cells, single-strand breaks at sites of repair remained open for 30, 19 and 14 sec, respectively. In G1 phase cells, repair sites remained open for 126 sec. Addition of deoxyribonucleosides to G1 cells reduced this time to 42 sec suggesting that the slower rate of synthesis and ligation of repair patches in G1 was due to a relative deficiency of deoxyribonucleotidyl precursors for DNA polymerase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Exposure to solar radiation can produce both acute and chronic changes in the skin, including sunburn, edema, immunosuppression, premature skin aging, and skin cancer. At the cellular level, solar radiation can produce adverse structural and functional changes in membrane proteins and lipids and in chromosomal and mitochondrial DNA. The increasing awareness of these adverse effects has led the public to demand better photoprotection. In this study, the alkaline comet assay was used to evaluate the photoprotective effects of three commercially available sunscreens at sun protection factors (SPF) 15 and 30. Human fibroblasts were used as target cells to conveniently study the effects of solar simulated radiation on DNA damage in the presence and absence of sunscreens. When human fibroblasts were exposed to various doses of solar simulated radiation, DNA damage, as measured in sunscreen-protected cells by the comet assay, was not significantly different from that detected in unexposed cells. At 1.0 and 1.5 minimal erythemal doses (MED), all sunscreens, at both SPF 15 and 30, provided nearly 100% photoprotection to the fibroblasts. Further studies are required to elucidate the role of UVA in the production and repair of DNA damage in cells exposed to sunlight.  相似文献   

16.
17.
Suppression of unscheduled DNA synthesis (UDS) after exposure to ultraviolet (UV) light in the human nuclei results when diploid human fibroblasts are fused with chick erythrocytes. The suppression is positively correlated with the number of erythrocyte nuclei in the heterokaryons, with a maximal effect at 36 h after fusion. Evidence is presented that this suppression is due to lowered levels of the enzymes involved in UDS as a result of inhibition of the RNA synthesis by chick components. No suppression of UDS is detected in the human nuclei of the HeLa-chick erythrocyte heterokaryons. In HeLa cells the rate of RNA synthesis is about 10 times higher than the rate in the normal diploid fibroblasts, and the relatively small inhibitory influence of the chick components will therefore not lead to a limitation of the enzymes involved in UDS in the HeLa-chick erythrocyte heterokaryons.  相似文献   

18.
The DNA lesions induced by active oxygen species generated from N-hydroxy-2-naphthylamine were quantitated by the alkaline elution technique as single-strand breaks using cultured human-skin fibroblasts. When cells were treated at 20 degrees C for 2 h with 0-25 microM carcinogen, the lesions increased biphasically with the concentration; the increase was slight below 10 microM while it was much larger and dose-dependent above this concentration. The dose response was similar for normal and xeroderma pigmentosum fibroblasts of complementation group A. There was no difference in the repair rate of single-strand breaks formed in these fibroblasts. The rates of repair of single strand breaks induced by N-hydroxy-2-naphthylamine and hydrogen peroxide were similar but slower than that of the repair of gamma-ray-induced single-strand breaks.  相似文献   

19.
The activity of the chloramphenicol acetyltransferase (cat) gene after transfection into human fibroblasts has been measured following treatment of the plasmid pRSVcat with either restriction enzymes or ultraviolet light. Restriction enzymes producing single cuts in the plasmid inactivated the expression of the cat gene whether the enzymes cut the plasmid inside the coding region of the gene or several kilobases away from the gene. Ultraviolet light produced a dose-dependent inactivation of the gene. The inactivation curve was steeper if the recipient cell strain was derived from a patient with xeroderma pigmentosum. The findings with this transient expression system contrast with previously reported results of experiments using plasmids which transform cells stably by integrating into the cellular genomic DNA.  相似文献   

20.
These studies describe the transport of proline and hydroxyproline in human diploid fibroblasts. Inhibition and kinetic analysis demonstrate that proline is actively transported by the “A” neutral amino acid carrier. Proline transport is Na+ dependent and is particularly sensitive to sulfhydryl inhibitors and ouabain. Hydroxyproline is also actively transported but its transport is mediated by a system different from those described previously for other neutral amino acids. Hydroxyproline transport requires the presence of Na+ and is sensitive to sulfhydryl inhibitors and ouabain. There is little inhibition of hydroxyproline transport in the presence of other amino acids with the exception of methionine. The methionine inhibition of hydroxyproline transport is of the non-competitive type. Little cross-reactivity was exhibited by the systems which transport proline and hydroxyproline. These studies indicate that human skin fibroblasts do not possess an iminoglycine transport system as has been described for many other tissues. The iminoglycine transport system has been identified as the genetic transport defect in iminoglycinuria. Consequently, skin fibroblasts are not an appropriate system for use in diagnosis of this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号