首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to assess the role of cyanobacteria in the formation and dynamics of microenvironments in microbial mats, we studied an experimental biofilm of a benthic, halotolerant strain, belonging to the Halothece cluster of cyanobacteria. The 12-week-old biofilm developed in a sand core incubated in a benthic gradient chamber under opposing oxygen and sulfide vertical concentration gradients. At the biofilm surface, and as a response to high light irradiances, specific accumulation of myxoxanthophyll was detected in the cells, consistent with the typical vertical distribution of sun versus shade species in nature. The oxygen turn-over in terms of gross photosynthesis and net productivity rates was comparable to oxygen dynamics in natural microbial mats. Sulfide blocked O(2) production at low irradiances in deep biofilm layers but the dynamics of H(2)S and pH demonstrated that sulfide removal by anoxygenic photosynthesis was taking place. At higher irradiances, as soon as H(2)S was depleted, the cells switched to oxygenic photosynthesis as has been postulated for natural communities. The similarities between this experimental biofilm and natural benthic microbial mats demonstrate the central role of cyanobacteria in shaping microenvironmental gradients and processes in other complex microbial communities.  相似文献   

2.
Abstract: The aerobic chemotrophic sulfur bacterium Thiobacillus thioparus T5 and the anaerobic phototrophic sulfur bacterium Thiocapsa roseopersicina M1 were co-cultured in continuously illuminated chemostats at a dilution rate of 0.05 h−1. Sulfide was the only externally supplied electron donor, and oxygen and carbon dioxide served as electron acceptor and carbon source, respectively. Steady states were obtained with oxygen supplies ranging from non-limiting amounts (1.6 mol O2 per mol sulfide, resulting in sulfide limitation) to severe limitation (0.65 mol O2 per mol sulfide). Under sulfide limitation Thiocapsa was competitively excluded by Thiobacillus and washed out. Oxygen/sulfide ratios between 0.65 and 1.6 resulted in stable coexistence. It could be deduced that virtually all sulfide was oxidized by Thiobacillus . The present experiments showed that Thiocapsa is able to grow phototrophically on the partially oxidized products of Thiobacillus . In pure Thiobacillus cultures in steady state extracellular zerovalent sulfur accumulated, in contrast to mixed cultures. This suggests that a soluble form of sulfur at the oxidation state of elemental sulfur is formed by Thiobacillus as intermediate. As a result, under oxygen limitation colorless sulfur bacteria and purple sulfur bacteria do not competitively exclude each other but can coexist. It was shown that its ability to use partially oxidized sulfur compounds, formed under oxygen limiting conditions by Thiobacillus , helps explain the bloom formation of Thiocapsa in marine microbial mats.  相似文献   

3.
The motility of the purple sulfur bacterium Marichromatium gracile was investigated under different light regimes in a gradient capillary setup with opposing oxygen and sulfide gradients. The gradients were quantified with microsensors, while the behavior of swimming cells was studied by video microscopy in combination with a computerized cell tracking system. M. gracile exhibited photokinesis, photophobic responses, and phobic responses toward oxygen and sulfide. The observed migration patterns could be explained solely by the various phobic responses. In the dark, M. gracile formed an approximately 500-microm-thick band at the oxic-anoxic interface, with a sharp border toward the oxic zone always positioned at approximately 10 microM O(2). Flux calculations yielded a molar conversion ratio S(tot)/O(2) of 2.03:1 (S(tot) = [H(2)S] + [HS(-)] + [S(2-)]) for the sulfide oxidation within the band, indicating that in darkness the bacteria oxidized sulfide incompletely to sulfur stored in intracellular sulfur globules. In the light, M. gracile spread into the anoxic zone while still avoiding regions with >10 microM O(2). The cells also preferred low sulfide concentrations if the oxygen was replaced by nitrogen. A light-dark transition experiment demonstrated a dynamic interaction between the chemical gradients and the cell's metabolism. In darkness and anoxia, M. gracile lost its motility after ca. 1 h. In contrast, at oxygen concentrations of >100 microM with no sulfide present the cells remained viable and motile for ca. 3 days both in light and darkness. Oxygen was respired also in the light, but respiration rates were lower than in the dark. Observed aggregation patterns are interpreted as effective protection strategies against high oxygen concentrations and might represent first stages of biofilm formation.  相似文献   

4.
The potential of microbial mats to develop sulfide-oxidizing biofims was explored. A bioreactor specially designed for the treatment of sulfide-containing effluents was inoculated with a microbial-mat sample, and a complex microbial biofilm with sulfide-oxidation activity developed. The microbial composition of the biofilm was studied by pigment, microscopy, and 16S rRNA gene analyses. Purple sulfur bacteria and diatoms were observed by microscopy, chlorophyll a and bacteriochlorophyll a were detected in the pigment analysis, and high genetic diversity was found in the 16S rRNA gene library. Specialized anaerobic sulfur oxidizers (i.e., phototrophic purple and green sulfur bacteria) dominated the library. Aerobic phototrophs (diatoms) also developed and the oxygen produced allowed the growth of aerobic sulfide oxidizers, such as Thiomicrospira-like spp. Cyanobacteria, which are significant organisms in natural microbial mats, did not develop in the reactor but unexpected uncultured members from the Epsilonproteobacteria developed profusely. Moreover, a variety of more minor organisms, such as members of the Cytophaga-Flavobacterium-Bacteroides (CFB) and purple non-sulfur bacteria (Roseospirillum sp.), were also present. The results showed that a complex community with high genetic and metabolic diversity, including many uncultured organisms, can develop in a laboratory-scale reactor.  相似文献   

5.
The sulfur cycle of Ebro Delta microbial mats was studied in order to determine sulfide production and sulfide consumption. Vertical distribution of two major functional groups involved in the sulfur cycle, anoxygenic phototrophic bacteria and dissimilatory sulfate-reducing bacteria (SRB), was also studied. The former reached up to 2.2×108 cfu cm–3 sediment in the purple layer, and the latter reached about 1.8×105 SRB cm–3 sediment in the black layer. From the changes in sulfide concentrations under light-dark cycles it can be inferred that the rate of H2S production was 6.2 μmol H2S cm–3 day–1 at 2.6 mm, and 7.6 μmol H2S cm–3 day–1 at 6 mm. Furthermore, sulfide consumption was also assessed, determining rates of 0.04, 0.13 and 0.005 mmol l–1 of sulfide oxidized at depths of 2.6, 3 and 6 mm, respectively. Electronic Publication  相似文献   

6.
Seventeen strains of phototrophic bacteria (4 strains of Chromatium spp., 2 strains of Thiocapsa sp., 4 strains of Ectothiorhodospira spp., 2 strains of Rhodopseudomonas sp., and 5 strains of Chlorobium spp.) have been grown in sulfide-limited continuous cultures to assess the affinity for sulfide. It was found that the affinity (calculated as the initial slope of the specific growth rate versus the concentration of sulfide) is higher in those phototrophic bacteria that deposit elemental sulfur outside the cells, than in those bacteria that store the sulfur inside the cells. A hypothesis is presented to explain this correlation.Dedicated to Prof. Dr. Hans G. Schlegel on the occasion of his 60th birthday  相似文献   

7.
Structure and development of a benthic marine microbial mat   总被引:9,自引:0,他引:9  
Abstract Vertically stratified microbial communities of phototrophic bacteria in the upper intertidal zones of the North Sea island of Mellum were investigated. Growth and population dynamics of the cyanobacterial mat were followed over three successive years. It was concluded that the initial colonization of the sandy sediments was by the cyanobacterium Oscillatoria . In well-established mats, however, the dominant organism was Microcoleus chthonoplastes . The observed succession of cyanobacteria during mat development is correlated with nitrogen fixation. Nitrogen fixation is necessary in this low-nutrient environment to ensure colonization by mat-constructing cyanobacteria. Under certain conditions, a red layer of purple sulfur bacteria developed underneath the cyanobacterial mat in which Chromatium and Thiocapsa spp. dominated, but Thiopedia and Ectothiorhodospira spp. have also been observed. Measurements of light penetrating the cyanobacterial mat indicated that sufficient light is available for the photosynthetic growth of purple sulfur bacteria. Profiles of oxygen, sulfide and redox potential within the microbial mat were measured using microelectrodes. Maximum oxygen concentrations, measured at a depth of 0.7 mm, reached levels more than twice the normal air saturation. Dissolved sulfide was not detected by the microelectrodes. Determination of acid-distilled sulfide, however, revealed appreciable amounts of bound sulfide in the mat. Redox profiles measured in the mat led to the conclusion that the upper 10 mm of the sedimentary sequence is in a relatively oxidized state.  相似文献   

8.
Abstract The vertical zonation of light, O2, H2S, pH, and sulfur bacteria was studied in two benthic cyanobacterial mats from hypersaline ponds at Guerrero Negro, baja California, Mexico. The physical-chemical gradients were analyzed in the upper few mm at ≥ 100 μm spatial resolution by microelectrodes and by a fiber optic microprobe. In mats, where oxygen produced by photosynthesis diffused far below the depth of the photic zone, colorless sulfur bacteria ( Beggiatoa sp.) were the dominant sulfide oxidizing organisms. In a mat, where the O2–H2S interface was close to the photic zone, but yet received no significant visible light, purple sulfur bacteria ( Chromatium sp.) were the dominant sulfide oxidizers. Analysis of the spectral light distribution heare showed that the penetration of only 1% of the incident near-IR light (800–900 nm) into the sulfide zone was sufficient for the development of Chromatium in a narrow band of 300 μm thickness. The balance betweem O2 and light penetration down into the sulfide zone thus deterined in mcro-scale which type of sulfur bacteria becamed dominant.  相似文献   

9.
Abstract The interaction between the purple sulfur bacterium Thiocapsa roseopersicina and the green sulfur bacterium Prosthecochloris aestuarii was studied in a gradient chamber under a 16-hours light-8-hours dark regime. The effects of interaction were inferred by comparing the final outcome of a mixed culture experiment with those of the respective axenic cultures using the same inoculation densities and experimental conditions. Densities of bacteria were deduced from radiance microprofiles, and the chemical microenvironment was investigated with O2, H2S, and pH microelectrodes. P. aestuarii always formed a biofilm below the maximal oxygen penetration depth and its metabolism was strictly phototrophic. In contrast, T. roseopersicina formed a bilayer in both the mixed and the axenic culture. The top layer formed by the latter organism was exposed to oxygen, and chemotrophic sulfide oxidation took place during the dark periods, while the bottom layer grew phototrophically during the light periods only. In the mixed culture, the relative density of P. aestuarii was lower than in the axenic culture, which reflects the effects of the competition for sulfide. However, the relative density of T. roseopersicina was actually higher in the mixed culture than in the corresponding axenic culture, indicating a higher growth yield on sulfide in the mixed culture experiment. Several hypotheses are proposed to explain the effects of the interaction. Received: 15 June 1998; Accepted: 18 January 1999  相似文献   

10.
Sedimentary biofilms of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404, the purple sulfur bacterium Thiocapsa roseopersicina strain 5811, and a mixed culture of both were cultured in fine sand (100- to 300-microm grain size) within counter gradients of oxygen and sulfide. The artificial sediments were exposed to illumination deprived of near-infrared light (NIR) by filtering out the wavelengths longer than 700 nm to simulate the critical light conditions in submerged aquatic sediments. A 16 h of visible light-8 h of dark regimen was used. We studied the effects of these light conditions on the metabolisms of and interactions between both species by comparing the single species biofilms with the mixed biofilm. The photosynthesis rates of P. aestuarii were shown to be highly limited by the imposed light conditions, because the sulfide photooxidation rates were strongly stimulated when NIR was added. T. roseopersicina performed both aerobic chemosynthesis and photosynthesis, but the photosynthesis rates were low and poorly stimulated by the addition of NIR. This species decreased the penetration depth of oxygen in the sediment by about 1 mm by actively respiring oxygen. This way, the strict anaerobe P. aestuarii was able to grow closer to the surface in the mixed culture. As a result, P. aestuarii benefited from the presence of T. roseopersicina in the mixed culture, which was reflected by an increase in the biomass. In contrast, the density of the latter species was almost completely unaffected by the interaction. Both species coexisted in a layer of the same depth in the mixed culture, and the ecological and evolutionary implications of coexistence are discussed.  相似文献   

11.
The motility of the purple sulfur bacterium Marichromatium gracile was investigated under different light regimes in a gradient capillary setup with opposing oxygen and sulfide gradients. The gradients were quantified with microsensors, while the behavior of swimming cells was studied by video microscopy in combination with a computerized cell tracking system. M. gracile exhibited photokinesis, photophobic responses, and phobic responses toward oxygen and sulfide. The observed migration patterns could be explained solely by the various phobic responses. In the dark, M. gracile formed an ~500-μm-thick band at the oxic-anoxic interface, with a sharp border toward the oxic zone always positioned at ~10 μM O2. Flux calculations yielded a molar conversion ratio Stot/O2 of 2.03:1 (Stot = [H2S] + [HS] + [S2−]) for the sulfide oxidation within the band, indicating that in darkness the bacteria oxidized sulfide incompletely to sulfur stored in intracellular sulfur globules. In the light, M. gracile spread into the anoxic zone while still avoiding regions with >10 μM O2. The cells also preferred low sulfide concentrations if the oxygen was replaced by nitrogen. A light-dark transition experiment demonstrated a dynamic interaction between the chemical gradients and the cell's metabolism. In darkness and anoxia, M. gracile lost its motility after ca. 1 h. In contrast, at oxygen concentrations of >100 μM with no sulfide present the cells remained viable and motile for ca. 3 days both in light and darkness. Oxygen was respired also in the light, but respiration rates were lower than in the dark. Observed aggregation patterns are interpreted as effective protection strategies against high oxygen concentrations and might represent first stages of biofilm formation.  相似文献   

12.
Studies were conducted in opposing gradients of oxygen and sulfide in microslide capillaries to (i) characterize the chemical microenvironment preferred by Candidatus Arcobacter sulfidicus, a highly motile, sulfur-oxidizing bacterium that produces sulfur in filamentous form, and (ii) to develop a model describing the mechanism of filamentous-sulfur formation. The highly motile microorganisms are microaerophilic, with swarms effectively aggregating within oxic-anoxic interfaces by exhibiting a chemotactic response. The position of the band was found to be largely independent of the sulfide concentration as it always formed at the oxic-anoxic interface. Flux calculations based on steady state gradients of oxygen and sulfide indicate that sulfide is incompletely oxidized to sulfur, in line with the formation of filamentous sulfur by these organisms. It is proposed that Candidatus Arcobacter sulfidicus effectively competes with other sulfur-oxidizing bacteria in the environment by being able to tolerate higher concentrations of hydrogen sulfide (1-2 mM) and by possessing the ability to grow at very low oxygen concentrations (1-10 muM). The formation of mat-like structures from filamentous sulfur appears to be a population mediated effort allowing these organisms to effectively colonize environments characterized by high sulfide, low oxygen and dynamic fluid movement.  相似文献   

13.
Abstract The survival after oxygen stress was studied with eight species of sulfate-reducing bacteria. In the absence of sulfide all species tolerated 6 min of aeration without loss of viability. Even after 3 h of aeration the viability of four species ( Desulfovibrio vulgaris, D. desulfuricans, D. salexigens and Desulfobacter postgatei ) was not impaired. Four other species were sensitive to 3 h of aeration: the surviving fractions of Desulfotomaculum ruminis, D. nigrificans and Desulfococcus multivorans were about 1%, that of Desulfotomaculum orientis about 0.01%. Formation of spores resulted in oxygen resistance of D. orientis . Reducing agents did not protect the vegetative cells of this strain against oxygen toxicity. In contrast, sulfhydryl group-containing agents increased the oxygen sensitivity considerably.
Growth of sulfate- and sulfur-reducing bacteria in oxygen-sulfide gradients in agar tubes was studied. In the gradients these strictly anaerobic bacteria revealed oxygen-dependent growth in sulfate- and sulfur-free medium. Three sulfate-reducing bacteria that could not use thiosulfate or sulfur as electron acceptor failed to grow in oxygen-sulfide gradients. Obviously, not directly molecular oxygen, but oxidation products of sulfide, such as thiosulfate or sulfur, were used as electron acceptors and were continuously regenerated in a cycling process from sulfide by autoxidation. The conceivable ecological significance of a short sulfur cycle driven by autoxidation of sulfide is discussed.  相似文献   

14.
High-diversity biofilm for the oxidation of sulfide-containing effluents   总被引:7,自引:0,他引:7  
In the present work, we describe for the first time the utilization of a complex microbial biofilm for the treatment of sulfide-containing effluents. A non-aerated packed-column reactor was inoculated with anoxic lake sediment and exposed to light. A biofilm developed in the column and showed a stable oxidation performance for several weeks. Microbial species composition was analyzed by microscopy, pigment analysis and a bacterial 16S rRNA gene clone library. Colorless sulfur bacteria, green algae and purple sulfur bacteria were observed microscopically. Pigment composition confirmed the presence of algae and purple sulfur bacteria. The clone library was dominated by alpha-Proteobacteria (mostly Rhodobacter group), followed by gamma-Proteobacteria (Chromatiaceae-like and Thiothrix-like aerobic sulfur oxidizers) and the Cytophaga-Flavobacterium-Bacteroides group. Plastid signatures from algae were also present and a few clones belonged to both the beta- (Rhodoferax sp., Thiobacillus sp.) and delta-Proteobacteria (Desulfocapsa sp.) and to the low G+C Gram-positive bacteria (Firmicutes group). The coexistence of aerobic, anaerobic, phototrophic and chemotrophic microorganisms in the biofilm, the species richness found within these metabolic groups (42 operational taxonomic units) and the microdiversity observed within some species could be very important for the long-term functioning and versatility of the reactor.  相似文献   

15.
Abstract The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen-limiting conditions, sulfide was partially oxidized to zerovalent sulfur (75%) and thiosulfate (17%). In addition, low concentrations of tetrathionate and polysulfide were detected. The finding of in vivo thiosulfate formation supports the discredited observations of thiosulfate formation in cell free extracts in the early sixties. In a microbial mat most sulfide oxidation was shown to take place under oxygen-limiting conditions. It is suggested that zerovalent sulfur formation by thiobacilli is a major process resulting in polysulfide accumulation. Implications for the competition between colorless sulfur bacteria and purple sulfur bacteria are discussed.  相似文献   

16.
Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.  相似文献   

17.
A push-pull method, previously used in groundwater analyses, was successfully adapted for measuring sulfide turnover rates in situ at different depths in the meromictic Lake Cadagno. In the layer of phototrophic bacteria at about 12 m in depth net sulfide consumption was observed during the day, indicating active bacterial photosynthesis. During the night the sulfide turnover rates were positive, indicating a net sulfide production from the reduction of more-oxidized sulfur compounds. Because of lack of light, no photosynthesis takes place in the monimolimnion; thus, only sulfide formation is observed both during the day and the night. Sulfide turnover rates in the oxic mixolimnion were always positive as sulfide is spontaneously oxidized by oxygen and as the rates of sulfide oxidation depend on the oxygen concentrations present. Sulfide oxidation by chemolithotrophic bacteria may occur at the oxicline, but this cannot be distinguished from spontaneous chemical oxidation.  相似文献   

18.
Phototrophy, the conversion of light to biochemical energy, occurs throughout the Bacteria and plants, however, debate continues over how different phototrophic mechanisms and the bacteria that contain them are related. There are two types of phototrophic mechanisms in the Bacteria: reaction center type 1 (RC1) has core and core antenna domains that are parts of a single polypeptide, whereas reaction center type 2 (RC2) is composed of short core proteins without antenna domains. In cyanobacteria, RC2 is associated with separate core antenna proteins that are homologous to the core antenna domains of RC1. We reconstructed evolutionary relationships among phototrophic mechanisms based on a phylogeny of core antenna domains/proteins. Core antenna domains of 46 polypeptides were aligned, including the RC1 core proteins of heliobacteria, green sulfur bacteria, and photosystem I (PSI) of cyanobacteria and plastids, plus core antenna proteins of photosystem II (PSII) from cyanobacteria and plastids. Maximum likelihood, parsimony, and neighbor joining methods all supported a single phylogeny in which PSII core antenna proteins (PsbC, PsbB) arose within the cyanobacteria from duplications of the RC1-associated core antenna domains and accessory antenna proteins (IsiA, PcbA, PcbC) arose from duplications of PsbB. The data indicate an evolutionary history of RC1 in which an initially homodimeric reaction center was vertically transmitted to green sulfur bacteria, heliobacteria, and an ancestor of cyanobacteria. A heterodimeric RC1 (=PSI) then arose within the cyanobacterial lineage. In this scenario, the current diversity of core antenna domains/proteins is explained without a need to invoke horizontal transfer.This article contains online-only supplementary material.Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

19.
In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.  相似文献   

20.
The effects of light quality (color) on the 14CO2 fixation rates of natural population of photosynthetic sulfur bacteria were tested. The phototrophic bacteria were collected from the sulfide containing waters of 3 stratified lakes. The populations sampled survive in environments where light intensities are very low. Not only are the light intensities low but, due to the light filtering characteristics of the lake water, the light is of specific color. It was determined that the spectral properties of the three lakes differed, hence the quality of light reaching the phototrophic bacteria in each lake differed. It was also observed that only green sulfur bacteria were present in the study lake which transmits mainly red light and both purple and green sulfur bacteria were present in the two study lakes which transmit predominantly green light. Enrichment cultures were set up with phototrophic bacteria from two of the lakes serving as the inocula. Enrichment culture studies and photosynthetic responses of the natural populations indicate that light quality is a major factor in determining the composition of phototrophic bacterial population in some lakes.Non-Common Abbreviations Bchl Bacteriochlorophyll - DPM Disintegrations per minute  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号