首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eragrostis pilosa (Linn.) P Beauv., a C4 grass native to east Africa, was grown at both ambient (350 μmol mol−1 and elevated (700 μmol mol−1) CO2 in either the presence or absence of the obligate, root hemi-parasite Striga hermonthica (Del.) Benth. Biomass of infected grasses was only 50% that of uninfected grasses at both CO2 concentrations, with stems and reproductive tissues of infected plants being most severely affected. By contrast, CO2 concentration had no effect on growth of E. pilosa , although rates of photosynthesis were enhanced by 30–40% at elevated CO2. Infection with S. hermonthica did not affect either rates of photosynthesis or leaf areas of E. pilosa , but did bring about an increase in root:shoot ratio, leaf nitrogen and phosphorus concentration and a decline in leaf starch concentration at both ambient and elevated CO2. Striga hermonthica had higher rates of photosynthesis and shoot concentrations of soluble sugars at elevated CO2, but there was no difference in biomass relative to ambient grown plants. Both infection and growth at elevated CO2 resulted in an increase in the Δ13C value of leaf tissue of E. pilosa , with the CO2 effect being greater. The proportion of host-derived carbon in parasite tissue, as determined from δ13C values, was 27% and 39% in ambient and elevated CO2 grown plants, respectively. In conclusion, infection with S. hermonthica limited growth of E. pilosa , and this limitation was not removed or alleviated by growing the association at elevated CO2.  相似文献   

2.
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar ( Populus ) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.  相似文献   

3.
Seedlings of three species native to central North America, a C3 tree, Populus tremuloides Michx., a C3 grass, Agropyron smithii Rybd., and a C4 grass, Bouteloua curtipendula Michx., were grown in all eight combinations of two levels each of CO2, O3 and nitrogen (N) for 58 days in a controlled environment. Treatment levels consisted of 360 or 674 μmol mol-1 CO2, 3 or 92 nmol mol-1 O3, and 0.5 or 6.0 m M N. In situ photosynthesis and relative growth rate (RGR) and its determinants were obtained at each of three sequential harvests, and leaf dark respiration was measured at the second and third harvests. In all three species, plants grown in high N had significantly greater whole-plant mass, RGR and photosynthesis than plants grown in low N. Within a N treatment, elevated CO2 did not significantly enhance any of these parameters nor did it affect leaf respiration. However, plants of all three species grown in elevated CO2 had lower stomatal conductance compared to ambient CO2-exposed plants. Seedlings of P. tremuloides (in both N treatments) and B. curtipendula (in high N) had significant ozone-induced reductions in whole-plant mass and RGR in ambient but not under elevated CO2. This negative O3 impact on RGR in ambient CO2 was related to increased leaf dark respiration, decreased photosynthesis and/or decreased leaf area ratio, none of which were noted in high O3 treatments in the elevated CO2 environment. In contrast, A. smithii was marginally negatively affected by high O3.  相似文献   

4.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

5.
To investigate if Eucalyptus species have responded to industrial-age climate change, and how they may respond to a future climate, we measured growth and physiology of fast- ( E. saligna ) and slow-growing ( E. sideroxylon ) seedlings exposed to preindustrial (290), current (400) or projected (650 μL L−1) CO2 concentration ([CO2]) and to current or projected (current +4 °C) temperature. To evaluate maximum potential treatment responses, plants were grown with nonlimiting soil moisture. We found that: (1) E. sideroxylon responded more strongly to elevated [CO2] than to elevated temperature, while E. saligna responded similarly to elevated [CO2] and elevated temperature; (2) the transition from preindustrial to current [CO2] did not enhance eucalypt plant growth under ambient temperature, despite enhancing photosynthesis; (3) the transition from current to future [CO2] stimulated both photosynthesis and growth of eucalypts, independent of temperature; and (4) warming enhanced eucalypt growth, independent of future [CO2], despite not affecting photosynthesis. These results suggest large potential carbon sequestration by eucalypts in a future world, and highlight the need to evaluate how future water availability may affect such responses.  相似文献   

6.
Seeds of cherry ( Prunus avium ) were germinated and grown for two growing seasons in ambient (∼350 μmol mol−1) or elevated (ambient+∼350 μmol mol−1) CO2 mole fractions in six open-top chambers. The seedlings were fertilized once a week, following Ingestad principles in order to supply mineral nutrients at free-access rates. In the first growing season gradual drought was imposed on rapidly growing cherry seedlings by withholding water for a 6-wk drying cycle. In the second growing season, the rapid onset of drought was imposed at the height of the growing season on the seedlings which had already experienced drought in the first growing season. Elevated [CO2] significantly increased total dry-mass production in both water regimes, but did not ameliorate the growth response to drought of the cherry seedlings subjected to two sequential drying cycles. Water loss did not differ in either well watered or droughted seedlings between elevated and ambient [CO2]; consequently whole-plant water- use efficiency (the ratio of total dry mass produced to total water consumption) was significantly increased. Similar patterns of carbon allocation between shoot and root were found in elevated and ambient [CO2] when the seedlings were the same size. Thus, elevated [CO2] did not improve drought tolerance, but it accelerated ontogenetic development irrespective of water status.  相似文献   

7.
Net photosynthesis and transpiration of seedlings from shade tolerant, moderately tolerant and intolerant tree species were measured in ambient carbon dioxide (CO2) concentrations ranging from 312 to 734 ppm. The species used, Fagus grandifolia Ehrh. (tolerant), Quercus alba L., Q. rubra L., Liriodendron tulipifera L. (moderately tolerant), Liquidambar styraciflua L. and Pinus taeda L. (intolerant), are found co-occurring in the mixed pine-hardwood forests of the Piedmont region of the southeastern United States. When seedlings were grown in shaded conditions, photosynthetic CO2 efficiency was significantly different in all species with the highest efficiency in the most shade tolerant species, Fagus grandifolia , and progressively lower efficiencies in moderately tolerant and intolerant species. Photosynthetic CO2 efficiency was defined as the rate of increase in net photosynthesis with increase in ambient CO2 concentration. When plants which had grown in a high light environment were tested, the moderately tolerant and intolerant deciduous species had the highest photosynthetic CO2 efficiencies but this capacity was reduced when these species grew in low light. The lowest CO2 efficiency and apparent quantum yield occurred in Pinus taeda in all cases. Water use efficiency was higher for all species in enriched CO2 environments but transpiration rate and leaf conductance were not affected by CO2 concentration. High photosynthetic CO2 efficiency may be advantageous for maintaining a positive carbon balance in the low light environment under a forest canopy.  相似文献   

8.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

9.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

10.
Abstract. While a short-term exposure to elevated atmospheric CO2 induces a large increase in photosynthesis in many plants, long-term growth in elevated CO2 often results in a smaller increase due to reduced photosynthetic capacity. In this study, it was shown that, for a wild C3 species growing in its natural environment and exposed to elevated CO2 for four growing seasons, the photosynthetic capacity has actually increased by 31%. An increase in photosynthetic capacity has been observed in other species growing in the field, which suggests that photosynthesis of certain field grown plants will continue to respond to elevated levels of atmospheric CO2  相似文献   

11.
To determine how increased atmospheric CO2 will affect the physiology of coppiced plants, sprouts originating from two hybrid poplar clones ( Populus trichocarpa × P. deltoides - Beaupre and P. deltoides × P. nigra - Robusta) were grown in open-top chambers containing ambient or elevated (ambient + 360 μmol mol−1) CO2 concentration. The effects of elevated CO2 concentration on leaf photosynthesis, stomatal conductance, dark respiration, carbohydrate concentration and nitrogen concentration were measured. Furthermore, dark respiration of leaves was partitioned into growth and maintenance components by regressing specific respiration rate vs specific growth rate. Sprouts of both clones exposed to CO2 enrichment showed no indication of photosynthetic down-regulation. During reciprocal gas exchange measurements, CO2 enrichment significantly increased photosynthesis of all sprouts by approximately 60% ( P < 0.01) on both an early and late season sampling date, decreased stomatal conductance of all sprouts by 10% ( P < 0.04) on the early sampling date and nonsignificantly decreased dark respiration by an average of 11%. Growth under elevated CO2 had no consistent effect on foliar sugar concentration but significantly increased foliar starch by 80%. Respiration rate was highly correlated with both specific growth rate and percent nitrogen. Long-term CO2 enrichment did not significantly affect the maintenance respiration coefficient or the growth respiration coefficient. Carbon dioxide enrichment affected the physiology of the sprouts the same way it affected these plants before they were coppiced.  相似文献   

12.
Plants of Nardus stricta growing near a cold, naturally emitting CO2 spring in Iceland were used to investigate the long-term (> 100 years) effects of elevated [CO2] on photosynthesis, biochemistry, growth and phenology in a northern grassland ecosystem. Comparisons were made between plants growing in an atmosphere naturally enriched with CO2 (≈ 790 μ mol mol–1) near the CO2 spring and plants of the same species growing in adjacent areas exposed to ambient CO2 concentrations (≈360 μ mol mol–1). Nardus stricta growing near the spring exhibited earlier senescence and reductions in photosynthetic capacity (≈25%), Rubisco content (≈26%), Rubisco activity (≈40%), Rubisco activation state (≈23%), chlorophyll content (≈33%) and leaf area index (≈22%) compared with plants growing away from the spring. The potential positive effects of elevated [CO2] on grassland ecosystems in Iceland are likely to be reduced by strong down-regulation in the photosynthetic apparatus of the abundant N. stricta species.  相似文献   

13.
The effect of elevated CO2 and different levels of nitrogen on the partitioning of nitrogen between photosynthesis and a constitutive nitrogen-based secondary metabolite (the cyanogenic glycoside prunasin) was examined in Eucalyptus cladocalyx . Our hypothesis was that the expected increase in photosynthetic nitrogen-use efficiency of plants grown at elevated CO2 concentrations would lead to an effective reallocation of available nitrogen from photosynthesis to prunasin. Seedlings were grown at two concentrations of CO2 and nitrogen, and the proportion of leaf nitrogen allocated to photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), protein and prunasin compared. Up to 20% of leaf nitrogen was allocated to the cyanogenic glycoside, although this proportion varied with leaf age, position and growth conditions. Leaf prunasin concentration was strongly affected by nitrogen supply, but did not increase, on a dry weight basis, in the leaves from the elevated CO2 treatments. However, the proportion of nitrogen allocated to prunasin increased significantly, in spite of a decreasing pool of leaf nitrogen, in the plants grown at elevated concentrations of CO2. There was less protein in leaves of plants grown at elevated CO2 in both nitrogen treatments, while the concentration of active sites of Rubisco only decreased in plants from the low-nitrogen treatment. These changes in leaf chemistry may have significant implications in terms of the palatability of foliage and defence against herbivores.  相似文献   

14.
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 µmol mol−1), temperature (ambient vs. ambient + 4° C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, Vcmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in Vcmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.  相似文献   

15.
An open-top chamber experiment was carried out to examine the likely effects of elevated atmospheric [CO2] on architectural as well as on physiological characteristics of two poplar clones ( Populus trichocarpa × P. deltoides clone Beaupré and P. deltoides × P. nigra clone Robusta). Crown architectural parameters required as input parameters for a three-dimensional (3D) model of poplar structure, such as branching frequency and position, branch angle, internode length and its distribution pattern, leaf size and orientation, were measured following growth in ambient and elevated [CO2 ] (ambient + 350 μmol mol–1) treated open-top chambers. Based on this information, the light interception and photosynthesis of poplar canopies in different [CO2] treatments were simulated using the 3D poplar tree model and a 3D radiative transfer model at various stages of the growing season. The first year experiments and modelling results showed that the [CO2] enrichment had effects on light intercepting canopy structure as well as on leaf photosynthesis properties. The elevated [CO2] treatment resulted in an increase of leaf area, canopy photosynthetic rate and above-ground biomass production of the two poplar clones studied. However, the structural components responded less than the process components to the [CO2] enrichment. Among the structural components, the increase of LAI contributed the most to the canopy light interception and canopy photosynthesis; the change of other structural aspects as a whole caused by the [CO2] enrichment had little effect on daily canopy light interception and photosynthesis.  相似文献   

16.
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 μ mol mol–1[CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102·8 ± 4·7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0·05) and root respiration (24%, P < 0·05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.  相似文献   

17.
1. One-year-old seedlings of shade tolerant Acer rubrum and intolerant Betula papyrifera were grown in ambient and twice ambient (elevated) CO2, and in full sun and 80% shade for 90 days. The shaded seedlings received 30-min sun patches twice during the course of the day. Gas exchange and tissue–water relations were measured at midday in the sun plants and following 20 min of exposure to full sun in the shade plants to determine the effect of elevated CO2 on constraints to sun-patch utilization in these species.
2. Elevated CO2 had the largest stimulation of photosynthesis in B. papyrifera sun plants and A. rubrum shade plants.
3. Higher photosynthesis per unit leaf area in sun plants than in shade plants of B. papyrifera was largely owing to differences in leaf morphology. Acer rubrum exhibited sun/shade differences in photosynthesis per unit leaf mass consistent with biochemical acclimation to shade.
4. Betula papyrifera exhibited CO2 responses that would facilitate tolerance to leaf water deficits in large sun patches, including osmotic adjustment and higher transpiration and stomatal conductance at a given leaf-water potential, whereas A. rubrum exhibited large increases in photosynthetic nitrogen-use efficiency.
5. Results suggest that species of contrasting successional ranks respond differently to elevated CO2, in ways that are consistent with the habitats in which they typically occur.  相似文献   

18.
The response of Phaseolus vulgaris L. cv. Contender grown under controlled environment at either ambient or elevated (360 and 700 μmol mol-1, respectively) CO2 concentrations ([CO2]), was monitored from 10 days after germination (DAG) until the onset of senescence. Elevated CO2 had a pronounced effect on total plant height (TPH), leaf area (LA), leaf dry weight (LD), total plant biomass (TB) accumulation and specific leaf area (SLA). All of these were significantly increased under elevated carbon dioxide with the exception of SLA which was significantly reduced. Other than high initial growth rates in CO2-enriched plants, relative growth rates remained relatively unchanged throughout the growth period. While the trends in growth parameters were clearly different between [CO2], some physiological processes were largely transient, in particular, net assimilation rate (NAR) and foliar nutrient concentrations of N, Mg and Cu. CO2 enrichment significantly increased NAR, but from 20 DAG, a steady decline to almost similar levels to those measured in plants grown under ambient CO2 occurred. A similar trend was observed for leaf N content where the loss of leaf nitrogen in CO2-enriched plants after 20 DAG, was significantly greater than that observed for ambient-CO2 plants. Under enhanced CO2, the foliar concentrations of K and Mn were increased significantly whilst P, Ca, Fe and Zn were reduced significantly. Changes in Mg and Cu concentrations were insignificant. In addition. high CO2 grown plants exhibited a pronounced leaf discoloration or chlorosis, coupled with a significant reduction in leaf longevity.  相似文献   

19.
Single leaf photosynthetic rates and various leaf components of potato ( Solanum tuberosum L.) were studied 1–3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll ( a + b ), chlorophyll ( a/b ), α -amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.  相似文献   

20.
The effects of elevated partial pressure of CO2 ( p CO2) and temperature, alone and in combination, on survival, calcification and dissolution were investigated in the crustose coralline alga Lithophyllum cabiochae . Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C) and at ambient [ca. 400 parts per million (ppm)] or elevated p CO2 (ca. 700 ppm). Algal necroses appeared at the end of summer under elevated temperature first at 700 ppm (60% of the thallus surface) and then at 400 ppm (30%). The death of algae was observed only under elevated temperature and was two- to threefold higher under elevated p CO2. During the first month of the experiment, net calcification was significantly reduced under elevated p CO2. At the end of the summer period, net calcification decreased by 50% when both temperature and p CO2 were elevated while no effect was found under elevated temperature and elevated p CO2 alone. In autumn and winter, net calcification in healthy algae increased with increasing temperature, independently of the p CO2 level, while necroses and death in the algal population caused a net dissolution at elevated temperature and p CO2. The dissolution of dead algal thalli was affected by elevated p CO2, being two- to fourfold higher than under ambient p CO2. These results suggest that net dissolution is likely to exceed net calcification in L. cabiochae by the end of this century. This could have major consequences in terms of biodiversity and biogeochemistry in coralligenous communities dominated by these algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号