首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary  Rocky outcrops are prominent geological features in agricultural landscapes worldwide. Reptiles are a major component of these habitats and some species are restricted to, and more abundant on, rocky outcrops than in remnant vegetation. Rock outcrops are important to reptiles because they provide resources that are often limited in the surrounding landscape (e.g. micro-gradients in climatic conditions, basking- and retreat-sites). However, there is a knowledge gap in the literature addressing the conservation value of small, rocky outcrops. Management may be necessary to reverse habitat degradation in these systems. We identify four key areas of management that need to be addressed to improve outcrop habitat values and enhance biodiversity conservation in agricultural landscapes. Specific actions involve: (i) protecting outcrops from processes that cause damage to rock microhabitat, (ii) monitoring and managing changes in vegetation structure to maintain thermally suitable environments, (iii) applying integrated pest animal control and (iv) improving matrix management to enhance inselberg function and landscape connectivity. Further research is required to evaluate the efficacy of different management regimes on outcrop biota. We hope this paper will provide the stimulus for land managers to incorporate rocky outcrops in future biodiversity conservation programmes.  相似文献   

3.
Biodiversity in agricultural landscapes can be increased with conversion of some production lands into 'more-natural'- unmanaged or extensively managed - lands. However, it remains unknown to what extent biodiversity can be enhanced by altering landscape pattern without reducing agricultural production. We propose a framework for this problem, considering separately compositional heterogeneity (the number and proportions of different cover types) and configurational heterogeneity (the spatial arrangement of cover types). Cover type classification and mapping is based on species requirements, such as feeding and nesting, resulting in measures of 'functional landscape heterogeneity'. We then identify three important questions: does biodiversity increase with (1) increasing heterogeneity of the more-natural areas, (2) increasing compositional heterogeneity of production cover types and (3) increasing configurational heterogeneity of production cover types? We discuss approaches for addressing these questions. Such studies should have high priority because biodiversity protection globally depends increasingly on maintaining biodiversity in human-dominated landscapes.  相似文献   

4.
Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species.  相似文献   

5.
With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape (‘land‐sharing’ agriculture) or a few large contiguous blocks alongside intensive farmland (‘land‐sparing’ agriculture). In this study, we are the first to integrate carbon storage alongside multi‐taxa biodiversity assessments to compare land‐sparing and land‐sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó‐Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land‐sparing strategies would be more beneficial for both carbon storage and biodiversity than land‐sharing strategies across a range of production levels. Biodiversity benefits of land‐sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land‐sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem services will be necessary to fully understand the links between land‐allocation strategies and long‐term ecosystem service provision.  相似文献   

6.
7.
郑晓明  杨庆文 《生物多样性》2021,29(2):167-1156
农业生物多样性是农业安全生产的基础条件和农业可持续发展的战略资源。中国自20世纪50年代就开始重视农业生物多样性的保护, 建立了较为完善的法律法规等保障体系, 并在农业生态系统、物种和遗传多样性3个层面采取了一系列保护措施, 基本形成了异位保存和原生境保护相互补充的保护体系, 取得了显著的保护成效。本文概述了中国近70年来农业生物多样性保护在法律法规和保护机制、保护规划、保护体系和能力建设方面取得的进展, 指出我国农业生物多样性保护面临着未与国际国内发展战略相适应、保护体系不完整、保护能力不足等问题, 并提出完善我国农业生物多样性保护体系、促进农业生态系统服务功能系统化、加快农业生物多样性主流化进程以及加强能力建设等相关建议。  相似文献   

8.
9.
Recent debates have discussed whether a species-approach or an ecosystem-approach is better for protecting biodiversity. Rather than perpetuate this debate, we argue that critical new scientific and conservation insights arise from combining and integrating approaches along a continuum. We present a suite of case studies and other examples, which highlight the value and synergies derived from an integrated approach for developing management-relevant understanding aimed at protecting biodiversity. Attempts to conserve biodiversity should therefore be multi-faceted in approach and thinking. They also should be long-term as well as driven by well-developed questions focused on closing key knowledge gaps.  相似文献   

10.
Agriculture and development transform forest ecosystems to human‐modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity‐friendly landscapes challenging. Here, we combine concepts with empirical support to design optimal landscape scenarios for forest‐dwelling species. The supported concepts indicate that appropriately sized landscapes should contain ≥ 40% forest cover, although higher percentages are likely needed in the tropics. Forest cover should be configured with c. 10% in a very large forest patch, and the remaining 30% in many evenly dispersed smaller patches and semi‐natural treed elements (e.g. vegetation corridors). Importantly, the patches should be embedded in a high‐quality matrix. The proposed landscape scenarios represent an optimal compromise between delivery of goods and services to humans and preserving most forest wildlife, and can therefore guide forest preservation and restoration strategies.  相似文献   

11.
Aim To enhance current attempts to understand biodiversity patterns by using an historical ecology approach to highlight the over‐riding influence of land‐use history in creating past, current and future patterns of biodiversity in fragmented agricultural landscapes. Methods We develop an integrative conceptual framework for understanding spatial and temporal variations in landscape patterns in fragmented agricultural landscapes by presenting five postulates (hypotheses) which highlight the important role of historical, anthropogenic disturbance regimes. We then illustrate each of these postulates with examples drawn from fragmented woodlands in agricultural areas of south‐eastern Australia, and discuss these findings in an international context. Location examples are drawn from agricultural areas in south‐eastern Australia. Results We conclude that there is limited potential to refine our understanding of patterns of biodiversity in human‐modified landscapes based on traditional concepts of island biogeography, or simple assumptions of ongoing destruction and degradation. Instead, we propose that in agricultural landscapes that were largely cleared over a century ago: (1) present‐day remnant vegetation patterns are not accidental, but are logically arrayed due to historic land‐use decisions, (2) historic anthropogenic disturbances have a major influence on current ecosystem conditions and diversity patterns, and (3) the condition of remnant ecosystems is not necessarily deteriorating rapidly. Main conclusions An historical ecology approach can enhance our understanding of why different species and ecosystem states occur where they do, and can explain internal variations in ecological conditions within remnant ecosystems, too often casually attributed to the ‘mess of history’. This framework emphasizes temporal changes (both past and future) in biotic patterns and processes in fragmented agricultural landscapes. Integration of spatially and temporally explicit historical land‐use information into ecological studies can prove extremely useful to test hypotheses of the effects of changes in landscape processes, and to enhance future research, restoration and conservation management activities.  相似文献   

12.
Gething  Kieran J.  Little  Sally 《Hydrobiologia》2020,847(14):3129-3138
Hydrobiologia - Artificial drainage networks, ubiquitous within lowland agricultural landscapes in Europe and North America, exhibit a range of physical and chemical conditions, and may provide...  相似文献   

13.
14.

Satoyama is one of the semi-natural ecosystems in Japan. Traditional agricultural practices in satoyama provide preferable habitats for many species, thus, enhancing biodiversity. However, many satoyama ecosystems have been altered by agricultural intensification and rapid urbanization. Meanwhile, ageing and shrinking population has led to the abandonment of remaining satoyama ecosystems, resulting in their potential degradation. We argue that counteracting the abandonment of satoyama is particularly essential in urbanized landscapes because conserving its biodiversity would have a payoff for urban communities. We focused on nature-oriented park use of satoyama ecosystems, utilizing their original scenery, topography, water features, and vegetation. To evaluate the potential of nature-oriented park use for biodiversity conservation, we examined the differences in diversity and species composition of vascular plants and butterflies among three land-use types (agricultural-use, park-use, and abandoned sites) of satoyama ecosystems. Diversity of native plants and butterflies did not significantly differ between agricultural-use and park-use sites and that of native plants was significantly lower at abandoned sites than at agricultural-use sites. Although species composition of native plants at agricultural-use sites and park-use sites significantly differ, that of native butterflies did not. The efficacy of park use for biodiversity conservation, thus, depended on the taxa. Nonetheless, for striking a balance between the difficulty in maintaining agricultural use and accelerating satoyama abandonment, our study highlights the utility of park use as an alternative usage, contributing to biodiversity conservation. Balancing the wise use of satoyama in urbanized landscapes is a fundamental step toward the conservation of its biodiversity and human–nature interactions.

  相似文献   

15.
16.
陶战 《生物多样性》1993,1(1):46-47
中国农业部门利用的国土面积达50%,农业生态系统是由古代生物多样性丰富的自然生态系统开发出来的,在农业生态系统中仍残存生物多样性富集的岛状野生生境和大量珍稀、濒危物种。农业上栽培和养殖利用1200多个动植物品种也是宝贵的种质资源,农业部门在保护生物多样性行动中责任重大。生物多样性是农业发展的潜在资源,开发不当会带来对农业再发展的危害。农业部门已开始了生物多样性保护行动,但存在许多需要改善与加强的环节,如国家首先要明确落实农业部门在保护生物多样性中的责任,保护农业生物多样性要列入国家和部门的发展计划,完善法规、政策、加强宣传教育,加强国内外合作交流等。  相似文献   

17.
18.
The dominant late twentieth century model of land use segregated agricultural production from areas managed for biodiversity conservation. This module is no longer adequate in much of the world. The Millennium Ecosystem Assessment confirmed that agriculture has dramatically increased its ecological footprint. Rural communities depend on key components of biodiversity and ecosystem services that are found in non-domestic habitats. Fortunately, agricultural landscapes can be designed and managed to host wild biodiversity of many types, with neutral or even positive effects on agricultural production and livelihoods. Innovative practitioners, scientists and indigenous land managers are adapting, designing and managing diverse types of 'ecoagriculture' landscapes to generate positive co-benefits for production, biodiversity and local people. We assess the potentials and limitations for successful conservation of biodiversity in productive agricultural landscapes, the feasibility of making such approaches financially viable, and the organizational, governance and policy frameworks needed to enable ecoagriculture planning and implementation at a globally significant scale. We conclude that effectively conserving wild biodiversity in agricultural landscapes will require increased research, policy coordination and strategic support to agricultural communities and conservationists.  相似文献   

19.
Agriculture is a primary factor underlying world-wide declines in biodiversity. However, different agricultural systems vary in their effects depending on their resemblance to the natural ecosystem, coverage across the landscape, and operational intensity. We combined data from the North American Breeding Bird Survey with remotely sensed measures of crop type and linear woody feature (LWF) density to study how agricultural type, woody structure and crop heterogeneity influenced the avian community at landscape scales across a broad agricultural region of eastern Canada. Specifically, we examined whether 1) avian diversity and abundance differed between arable crop agriculture (e.g., corn, soy) and forage (e.g., hay) and pastoral agriculture, 2) whether increasing the density of LWF enhances avian diversity and abundance, and 3) whether increasing the heterogeneity of arable crop types can reduce negative effects of arable crop amount. Avian diversity was lower in landscapes dominated by arable crop compared to forage agriculture likely due to a stronger negative correlation between arable cropping and the amount of natural land cover. In contrast, total avian abundance did not decline with either agricultural type, suggesting that species tolerant to agriculture are compensating numerically for the loss of non-tolerant species. This indicates that bird diversity may be a more sensitive response than bird abundance to crop cover type in agricultural landscapes. Higher LWF densities had positive effects on the diversity of forest and shrub bird communities as predicted. Higher crop heterogeneity did not reduce the negative effects of high crop amount as expected except for wetland bird abundance. In contrast, greater crop heterogeneity actually strengthened the negative effects of high crop amount on forest bird abundance, shrub-forest edge bird diversity and total bird diversity. We speculate that this was due to negative correlations between crop heterogeneity and the amount of shrub and forest habitat patches in crop-dominated landscapes in our study region. The variable response to crop heterogeneity across guilds suggests that policies aimed at crop diversification may not enhance avian diversity on their own and that management efforts aimed at the retention of natural forest and shrub patches, riparian corridors, and hedge-rows would be more directly beneficial.  相似文献   

20.
Many bumblebee species are declining due to a loss of semi-natural habitats in agricultural landscapes resulting in diminished forage and nest sites. Anecdotal experience indicates that bumblebees nest in straw bales, but scientific evidence is lacking. We spent 250 h screening for bumblebee nests in 1255 straw bales and ten straw stacks belonging to 58 farms in two intensively farmed Swedish regions and recorded nests, nest traffic, and straw characteristics. We supplemented the straw screening with screening of control areas, without straw, that were selected in similar environments as the areas with straw. We observed 45 bumblebee nests (including potential nests where a single bumblebee flew in or out of the straw) of eight species/species groups, including one red-listed, in or directly adjacent to the straw at 26 of the farms. Nests were mainly found in partly decayed straw and bales placed together. We found no nests in control areas. Based on our results, we suggest that straw can be used as an easy, cheap and efficient intervention to increase the availability of bumblebee nest sites in agricultural landscapes. Considering the costs and benefits of the alternatives, we conclude that straw addition has advantages over commercial bumblebee colonies for crop pollination purposes and over artificial nest boxes for conservation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号