首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
风电作为清洁可再生绿色能源越来越受到世界各国的重视,其建设规模也在不断扩大,导致风电建设与鸟类保护的矛盾进一步凸显,如何协调风电发展与物种保护已成为生态学家和保护生物学家关注的热点主题。为了探究风机对鸟类物种、功能和谱系的影响,本研究于2019年1、3、4、5月,采用样线法对连山风电场的鸟类多样性进行了4次调查。根据样线离风机距离的远近设置4个梯度: 100~300 m有6条样线,300~500 m 有13条样线,500~700 m 有8条样线,>700 m 有5条样线。结果表明: 本次调查中记录了繁殖留鸟76种,隶属于11目31科,目、科中数量最多是雀形目(53种)和画眉科(12种)。鸟类物种丰富度、功能丰富度(FRic)和谱系多样性(Faith PD)随着离风机距离的增加呈增加趋势: 在500 m以内未显著增加,500 m外呈显著增加趋势;鸟类群落水平的扩散能力呈现出增加趋势。鸟类群落的平均成对功能和谱系距离的标准化效应值(SES.MFD和SES.MPD)均小于0,其中显著低于随机值的样线占比约为50%(P<0.05)。风力发电机对鸟类物种、功能和谱系的影响主要在前500 m的距离;本研究的4个梯度中,鸟类群落的功能和谱系结构均表现为聚集特征。研究证实,风机对鸟类的影响是多维度的,在评估风机对鸟类群落的影响时仅考虑物种多样性可能难以提供全面的信息。  相似文献   

2.
Batesian mimics can parasitize Müllerian mimicry rings mimicking the warning color signal. The evolutionary success of Batesian mimics can increase adding complexity to the signal by behavioral and locomotor mimicry. We investigated three fundamental morphological and locomotor traits in a Neotropical mimicry ring based on Ithomiini butterflies and parasitized by Polythoridae damselflies: wing color, wing shape, and flight style. The study species have wings with a subapical white patch, considered the aposematic signal, and a more apical black patch. The main predators are VS‐birds, visually more sensitive to violet than to ultraviolet wavelengths (UVS‐birds). The white patches, compared to the black patches, were closer in the bird color space, with higher overlap for VS‐birds than for UVS‐birds. Using a discriminability index for bird vision, the white patches were more similar between the mimics and the model than the black patches. The wing shape of the mimics was closer to the model in the morphospace, compared to other outgroup damselflies. The wing‐beat frequency was similar among mimics and the model, and different from another outgroup damselfly. Multitrait aposematic signals involving morphology and locomotion may favor the evolution of mimicry rings and the success of Batesian mimics by improving signal effectiveness toward predators.  相似文献   

3.
The alula is a small structure present on the leading edge of bird wings and is known to enhance lift by creating a small vortex at its tip. Alula size vary among birds, but how this variation is associated with the function of the alula remains unclear. In this study, we investigated the relationship between the size and shape of the alula and the features of the wing in the Laridae and Sternidae. Laridae birds have generally longer wings and greater loadings than Sternidae birds. The two families differed in the relationships between body size or wing length and the size or shape of the alula. In the Laridae, the aspect ratio of the alula was smaller in the species that have relatively longer wings, but the pattern was opposite in the Sternidae. The aspect ratio of the alula was greater in the species that are relatively heavier in the Sternidae but not in the Laridae. Combined, these results suggest that the species with high loading potential and long wings exhibit long alula. We hypothesize that heavier species may benefit from having longer alula if they perform flights with higher attack angles than lighter species, as longer alula would better suppress flow separation at higher attack angles. Our results suggest that the size and shape of the alula can be explained in one allometric landscape defined by wing length and loading in these two closely related families of birds with similar wing shapes.  相似文献   

4.
Joris Everaert 《Bird Study》2013,60(2):220-230
Capsule Local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms.

Aims The impact of bird collisions was studied at eight land-based wind farm sites with a total of 66 small to large turbines in order to assess the mortality rate and collision risk.

Methods Searches for collision fatalities were performed under all turbines with a minimum search interval of 14 days. Mortality rate was calculated with corrections for available search area, scavenging and search efficiency. Flight movements of birds crossing five of the wind farm sites were recorded during a minimum of four days per site. Actual collision risk was then calculated as the number of collision fatalities relative to the average surveyed flight intensity.

Results Mortality rate was 21 birds per turbine per year on average. Most fatalities were local common species (e.g. gulls) but rarer species were also found (e.g. terns, raptors and waders). Collision risk of gulls was 0.05% and 0.08% on average for birds, respectively, flying at turbine and rotor height through the wind farms (0.09% and 0.14% maximum). Large gulls had a significant higher collision risk than small gulls at rotor height. Mortality rate and collision risk were not significantly related to turbine size. The results were integrated in a widely used collision risk model to obtain information of micro-avoidance, i.e. the proportion of birds that fly through the wind farm but avoid passing through the rotor swept area of the turbines. For gulls, this micro-avoidance was 96.1% and 96.3% on average for birds, respectively, flying at turbine and rotor height through the wind farms.

Conclusion The results indicate that local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms. However, large turbines have more installed capacity (MW), so repowering wind farms with larger but fewer wind turbines, could reduce total mortality at certain locations.  相似文献   

5.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

6.
In migratory bird species, juveniles normally have shorter and more rounded wings than adults. The causes of this age‐specific difference in wing morphology, however, are largely unknown. Here, we used longitudinal data collected over 3 years from a Pied Flycatcher Ficedula hypoleuca population to assess whether age‐related differences in wing morphology are a consequence of ontogenetic changes or of selection favouring birds with longer and more pointed wings. Our study provides evidence of ontogenetic changes in wing length and shape, whereby birds grow longer and more pointed wings as they grow older. Age‐dependent variation is likely to be adaptive and may partly explain age differences in spring migration phenology and breeding success.  相似文献   

7.
Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats.  相似文献   

8.
风力发电对鸟类的影响以及应对措施   总被引:2,自引:0,他引:2  
风能是一种清洁而稳定的可再生能源,风力发电可以减少全球温室气体排放,在减缓气候变化中发挥重要作用。然而,风电场的建设会对自然保护、生态环境和动物生存会造成一定的负面影响,其中对鸟类的影响尤为突出。本文通过查阅欧美等国风电场对鸟类及野生动物影响的研究文献,总结了风电场对鸟类的生存、迁徙和栖息地环境的影响,以及导致鸟类与风电塔相撞的影响因素,并提出了相关防范措施和方法。近十年中国风力发电事业发展迅猛,已经成为世界上风电装机容量最大的国家,但中国在评估风电场发展对野生动物影响方面的研究工作非常匮乏。目前,我国应借鉴国外相关研究管理经验,通过长期的连续观测,认真评估国内正在运行和在建风电场对于鸟类和其他野生动物的影响及潜在威胁。同时,应重视鸟类迁徙的基础研究,为新建风电场选址提供科学方案,保证风力发电与生态环境保护之间的和谐发展。  相似文献   

9.
Bird and bat fatalities increase with wind energy expansion and the only effective fatality-reduction measure has been operational curtailment, which has been documented for bats but not for birds. We performed opportune before-after, control-impact (BACI) experiments of curtailment effects on bird and bat fatalities and nocturnal passage rates during fall migration at 2 wind projects, where 1 continued operating and the other shut down from peak migration to the study's end (study 1). We also performed BACI experiments during a 3-year study of curtailment and operational effects on bird fatalities among wind turbines of varying operational status (study 2). In study 1, wind turbine curtailment significantly reduced near-misses and rotor-disrupted flights of bats, and it significantly reduced fatalities of bats but not of birds. In study 2, converting wind turbines from inoperable to operable status did not significantly increase bird fatalities, and bird species of hole or sheltered-ledge nesters or roosters on human-made structures died in substantial numbers at vacant towers. Of bird species represented by fatalities in study 2, 79% were found at inoperable wind turbines. Because the migration season is relatively brief, seasonal curtailment would greatly reduce bat fatalities for a slight loss in annual energy generation, but it might not benefit many bird species. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

10.
Migrating birds are under selective pressure to complete long-distance flights quickly and efficiently. Wing morphology and body mass influence energy expenditure of flight, such that certain characteristics may confer a greater relative advantage when making long crossings over ecological barriers by modifying the flight range or speed. We explored the possibility, among light (mass <50 g) migrating passerines, that species with relatively poorer flight performance related to wing shape and/or body mass have a lower margin for error in dealing with the exigencies of a long water crossing across the Gulf of Mexico and consequently minimize their travel time or distance. We found that species-mean fat-free body mass and wing tip pointedness independently explained variability among species distributions within ~50 km from the northern coast. In both spring and autumn, lighter (i.e., slower flying) species and species with more rounded wings were concentrated nearest the coastline. Our results support the idea that morphology helps to shape broad-scale bird distributions along an ecological barrier and that migration exerts some selective force on passerine morphology. Furthermore, smaller species with less-efficient flight appear constrained to stopping over in close proximity to ecological barriers, illustrating the importance of coastal habitats for small passerine migrants.  相似文献   

11.
Bowlin MS  Wikelski M 《PloS one》2008,3(5):e2154
Migratory bird, bat and insect species tend to have more pointed wings than non-migrants. Pointed wings and low wingloading, or body mass divided by wing area, are thought to reduce energy consumption during long-distance flight, but these hypotheses have never been directly tested. Furthermore, it is not clear how the atmospheric conditions migrants encounter while aloft affect their energy use; without such information, we cannot accurately predict migratory species' response(s) to climate change. Here, we measured the heart rates of 15 free-flying Swainson's Thrushes (Catharus ustulatus) during migratory flight. Heart rate, and therefore rate of energy expenditure, was positively associated with individual variation in wingtip roundedness and wingloading throughout the flights. During the cruise phase of the flights, heart rate was also positively associated with wind speed but not wind direction, and negatively but not significantly associated with large-scale atmospheric stability. High winds and low atmospheric stability are both indicative of the presence of turbulent eddies, suggesting that birds may be using more energy when atmospheric turbulence is high. We therefore suggest that pointed wingtips, low wingloading and avoidance of high winds and turbulence reduce flight costs for small birds during migration, and that climate change may have the strongest effects on migrants' in-flight energy use if it affects the frequency and/or severity of high winds and atmospheric instability.  相似文献   

12.
Abstract

Internationally, birds of prey are often reported as being relatively prone to collision with wind turbines in comparison to other groups of birds. However, as yet it is unclear to what extent New Zealand's only endemic bird of prey, the New Zealand falcon (Falco novaeseelandiae), is at risk. In this paper we summarise the potential for wind farms to impact New Zealand falcon, evaluate the efficacy of a range of risk assessment and post-consent monitoring practices, and present options for mitigating and/or offsetting any residual effects. We conclude that the lack of knowledge on the effects of wind farms on New Zealand falcon is the result of inconsistency in the assessment methods thus far employed and the absence of a coordinated approach to monitoring methods and the dissemination of results. To remedy this we present a risk assessment framework that, if adopted, will provide the information necessary to ensure alternative energy targets can be met without compromising the conservation of this threatened species.  相似文献   

13.
Collision with turbines at wind farms is expected to have a greater impact on birds at particular sites where high concentrations of individuals occur, such as migration bottleneck areas. The Strait of Gibraltar (southern Spain) has long been recognized as the most important bottleneck in western Europe for soaring bird migration. Moreover, this area is within one of the most important potential areas for wind energy generation in Spain. Here, we examine monthly migratory soaring bird abundance in relation to long-term avian mortality rates at 21 wind farms located near the Strait of Gibraltar using zero-inflated hurdle negative binomial and gamma models. Best fit models included an effect of season in the collision mortality rates and in the proportion of adult individuals within the total deaths. However, monthly bird abundance was not directly related to the number of fatalities over the year. The accumulated fatalities during autumn migration constitute a small percentage (1%) of the total migrating population size. Moreover, mortality peak during autumn migration is largely attributable to juvenile birds. In contrast, the number of fatalities coinciding with the breeding period constitutes a substantial proportion (6%) of the local population, and it involved substantial losses among adult birds. Our results show that wind farms probably have an individually low impact on the migratory population of soaring birds. On the contrary, annual losses among adult local birds are remarkably high considering the small size of the local populations, and they may have population level effects.  相似文献   

14.
Wind farming is a relatively new form of obtaining energy that does not cause air pollution or other forms of environmental degradation associated with fossil fuel technologies. However, their use impacts on the environment, and the current rate at which they are being put into operation, combined with poor understanding of their medium- and long-term impact, is a cause of concern. Wind farms represent a new source of impact and disturbance for birds that adds to the long list of disturbance factors caused by human activity, such as power lines, radio and television towers, highways, glass windows, the practice of poisoning, illegal hunting and overexploitation. Due to the precarious situation of several bird species and their decline, any additional cause of mortality may be significant and should give rise to increased attention and research. The aim of the present work is to analyse the effect of the “Sierra de Aguas” wind farm on bird density and abundance, flight behaviour, and bird mortality. Mortality rates did not increase due to the presence of the wind turbines. The results suggest that the presence and operation of the wind turbines did not have a clearly negative effect on passerine birds present in the region where wind farm is located. However, raptors used the space around the wind farm with lower frequency than prior to its existence, which represented a displacement of the home range of these species.  相似文献   

15.
Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).  相似文献   

16.
Behaviour has direct links to wing morphology in bird species. Many studies have postulated migration to be one of the most important forces of selection acting on wing morphology, particularly in relation to wing pointedness. Studies in passerines have found that adults have longer and more pointed wings than juveniles, especially in migratory species. We analysed differences in wing morphology between age groups of the European Turtle Dove, a non‐passerine migratory species that benefits from rounded wings during their daily activity, due to its ground‐feeding behaviour and acrobatic flight style. Our results show that adults of this species have longer but more rounded wings than juveniles. This suggests that in this species wing morphology in juveniles is selected to facilitate the first migration, whereas other selection forces (e.g. flight manoeuvrability) are more important after the first moult. These data also explain why juveniles are not as adept at escaping from predators or hunters as adults.  相似文献   

17.
Wing design in birds is subject to a suite of interacting selective pressures. As different performance traits are favoured in different ecological settings, a tight link is generally expected between variation in wing morphology and variation in ecological parameters. In the present study, we document aspects of variation in wing morphology in the medium ground finch ( Geospiza fortis ) on Isla Santa Cruz in the Galápagos. We compare variation in body size, simple morphometric traits (body mass, last primary length, wing length, wing chord, and wing area) and functional traits (wing loading, aspect ratio and wing pointedness) across years, among populations, and between sexes. Functional traits are found to covary across years with differences in climatic conditions, and to covary among populations with differences in habitat structure. In dry years and arid locations, wing aspect ratios are highest and wings are more pointed, consistent with a need for a low cost of transport. In wet years and cluttered habitats, wing loading is lowest and wings are more rounded, suggesting enhanced capabilities for manoeuvrability. Sexes differ in wing loading, with males having lower wing loadings than females. Superior manoeverability might be favoured in males for efficient territory maintenance. Lastly, in contrast to functional traits, we found little consistent inter-annual or inter-site variation in simple morphometric traits.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 129–138.  相似文献   

18.
Since the early 1990s, marine wind farms have become a reality, with at least 13 000 offshore wind turbines currently proposed in European waters. There are public concerns that these man-made structures will have a significant negative impact on the many bird populations migrating and wintering at sea. We assess the degree of usefulness and the limitations of different remote technologies for studying bird behaviour in relation to bird–turbine collisions at offshore wind farms. Radar is one of the more powerful tools available to describe the movement of birds in three-dimensional space. Although radar cannot measure bird–turbine collisions directly, it offers the opportunity to quantify input data for collision models. Thermal Animal Detection System (TADS) is an infra red-based technology developed as a means of gathering highly specific information about actual collision rates, and also for parameterizing predictive collision models. TADS can provide information on avoidance behaviour of birds in close proximity to turbine rotor-blades, flock size and flight altitude. This review also assesses the potential of other (some as yet undeveloped) techniques for collecting information on bird flight and behaviour, both pre- and post-construction of the offshore wind farms. These include the use of ordinary video surveillance equipment, microphone systems, laser range finder, ceilometers and pressure sensors.  相似文献   

19.
The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.  相似文献   

20.
Abstract The 165-km2 Altamont Pass Wind Resource Area (APWRA) in west-central California includes 5,400 wind turbines, each rated to generate between 40 kW and 400 kW of electric power, or 580 MW total. Many birds residing or passing through the area are killed by collisions with these wind turbines. We searched for bird carcasses within 50 m of 4,074 wind turbines for periods ranging from 6 months to 4.5 years. Using mortality estimates adjusted for searcher detection and scavenger removal rates, we estimated the annual wind turbine–caused bird fatalities to number 67 (80% CI = 25–109) golden eagles (Aquila chrysaetos), 188 (80% CI = 116–259) red-tailed hawks (Buteo jamaicensis), 348 (80% CI = −49 to 749) American kestrels (Falco sparverius), 440 (80% CI = −133 to 1,013) burrowing owls (Athene cunicularia hypugaea), 1,127 (80% CI = −23 to 2,277) raptors, and 2,710 (80% CI = −6,100 to 11,520) birds. Adjusted mortality estimates were most sensitive to scavenger removal rate, which relates to the amount of time between fatality searches. New on-site studies of scavenger removal rates might warrant revising mortality estimates for some small-bodied bird species, although we cannot predict how the mortality estimates would change. Given the magnitude of our mortality estimates, regulatory agencies and the public should decide whether to enforce laws intended to protect species killed by APWRA wind turbines, and given the imprecision of our estimates, directed research is needed of sources of error and bias for use in studies of bird collisions wherever wind farms are developed. Precision of mortality estimates could be improved by deploying technology to remotely detect collisions and by making wind turbine power output data available to researchers so that the number of fatalities can be related directly to the actual power output of the wind turbine since the last fatality search.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号