首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Endothelial progenitor cells (EPCs) are mobilized from bone marrow to peripheral blood, and contribute to angiogenesis in tissue. In the process, EPCs are exposed to shear stress generated by blood flow and tissue fluid flow. Our previous study showed that shear stress induces differentiation of mature EPCs in adhesive phenotype into mature endothelial cells and, moreover, arterial endothelial cells. In this study we investigated whether immature EPCs in a circulating phenotype differentiate into mature EPCs in response to shear stress. When floating-circulating phenotype EPCs derived from ex vivo expanded human cord blood were exposed to controlled levels of shear stress in a flow-loading device, the bioactivities of adhesion, migration, proliferation, antiapoptosis, tube formation, and differentiated type of EPC colony formation increased. The surface protein expression rate of the endothelial markers VEGF receptor 1 (VEGF-R1) and -2 (VEGF-R2), VE-cadherin, Tie2, VCAM1, integrin α(v)/β(3), and E-selectin increased in shear-stressed EPCs. The VEGF-R1, VEGF-R2, VE-cadherin, and Tie2 protein increases were dependent on the magnitude of shear stress. The mRNA levels of VEGF-R1, VEGF-R2, VE-cadherin, Tie2, endothelial nitric oxide synthase, matrix metalloproteinase 9, and VEGF increased in shear-stressed EPCs. Inhibitor analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signal transduction pathway is a potent activator of adhesion, proliferation, tube formation, and differentiation in response to shear stress. Western blot analysis revealed that shear stress activated the VEGF-R2 phosphorylation in a ligand-independent manner. These results indicate that shear stress increases differentiation, adhesion, migration, proliferation, antiapoptosis, and vasculogenesis of circulating phenotype EPCs by activation of VEGF-R2 and the PI3K/Akt/mTOR signal transduction pathway.  相似文献   

2.
A productive angiogenic response must couple to the survival machinery of endothelial cells to preserve the integrity of newly formed vessels. Angiopoietin-1 (Ang-1) is an endothelium-specific ligand essential for embryonic vascular stabilization, branching morphogenesis, and post-natal angiogenesis, but its contribution to endothelial cell survival has not been completely elucidated. Here we show that Ang-1 acting via the Tie 2 receptor induces phosphorylation of the survival serine-threonine kinase, Akt (or protein kinase B). This is associated with up-regulation of the apoptosis inhibitor, survivin, in endothelial cells and protection of endothelium from death-inducing stimuli. Moreover, dominant negative survivin negates the ability of Ang-1 to protect cells from undergoing apoptosis. The activation of anti-apoptotic pathways mediated by Akt and survivin in endothelial cells may contribute to Ang-1 stabilization of vascular structures during angiogenesis, in vivo.  相似文献   

3.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an important role in receptor tyrosine kinase-mediated signal transduction. We found here that laminar flow (shear stress = 12 dynes/cm2) rapidly stimulated Gab1 tyrosine phosphorylation in both bovine aortic endothelial cells and human umbilical vein endothelial cells, which correlated with activation of Akt and eNOS. Gab1 phosphorylation as well as activation of Akt and eNOS by flow was inhibited by the Src kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and VEGFR2 kinase inhibitors SU1498 and VTI, suggesting that flow-mediated Gab1 phosphorylation is Src kinase-dependent and VEGFR2-dependent. Tyrosine phosphorylation of Gab1 by flow was functionally important, because flow stimulated the association of Gab1 with the PI3K subunit p85 in a time-dependent manner. Furthermore, transfection of a Gab1 mutant lacking p85 binding sites inhibited flow-induced activation of Akt and eNOS. Finally, knockdown of endogenous Gab1 by small interference RNA abrogated flow activation of Akt and eNOS. These data demonstrate a critical role of Gab1 in flow-stimulated PI3K/Akt/eNOS signal pathway in endothelial cells.  相似文献   

4.
Tie1 is an orphan receptor tyrosine kinase that is expressed almost exclusively in endothelial cells and that is required for normal embryonic vascular development. Genetic studies suggest that Tie1 promotes endothelial cell survival, but other studies have suggested that the Tie1 kinase has little to no activity, and Tie1-mediated signaling pathways are unknown. To begin to study Tie1 signaling, a recombinant glutathione S-transferase (GST)-Tie1 kinase fusion protein was produced in insect cells and found to be autophosphorylated in vitro. GST-Tie1 but not a kinase-inactive mutant associated with a recombinant p85 SH2 domain protein in vitro, suggesting that Tie1 might signal through phosphatidylinositol (PI) 3-kinase. To study Tie1 signaling in a cellular context, a c-fms-Tie1 chimeric receptor (fTie1) was expressed in NIH 3T3 cells. Ligand stimulation of fTie1 resulted in Tie1 autophosphorylation and downstream activation of PI 3-kinase and Akt. Stimulation of fTie1-expressing cells potently inhibited UV irradiation-induced apoptosis in a PI 3-kinase-dependent manner. Moreover, both Akt phosphorylation and inhibition of apoptosis were abrogated by mutation of tyrosine 1113 to phenylalanine, suggesting that this residue is an important PI 3-kinase binding site. These findings are the first biochemical demonstration of a signal transduction pathway and corresponding cellular function for Tie1, and the antiapoptotic effect of Tie1 is consistent with the results of previous genetic studies.  相似文献   

5.
Laminar shear stress is a key determinant of systemic vascular behavior, including through activation of endothelial nitric oxide synthase (eNOS), but little is known of its role in the glomerulus. We confirmed eNOS expression by glomerular endothelial cells (GEnC) in tissue sections and examined effects of acute exposure (up to 24 h) to physiologically relevant levels of laminar shear stress (10-20 dyn/cm(2)) in conditionally immortalized human GEnC. Laminar shear stress caused an orientation of GEnC and stress fibers parallel to the direction of flow and induced Akt and eNOS phosphorylation along with NO production. Inhibition of the phophatidylinositol (PI)3-kinase/Akt pathway attenuated laminar shear stress-induced eNOS phosphorylation and NO production. Laminar shear stress of 10 dyn/cm(2) had a dramatic effect on GEnC permeability, reversibly decreasing the electrical resistance across GEnC monolayers. Finally, the laminar shear stress-induced reduction in electrical resistance was attenuated by the NOS inhibitors l-N(G)-monomethyl arginine (l-NMMA) and l-N(G)-nitroarginine methyl ester (l-NAME) and also by inhibition of the PI3-kinase/Akt pathway. Hence we have shown for GEnC in vitro that acute permeability responses to laminar shear stress are dependent on NO, produced via activation of the PI3-kinase/Akt pathway and increased eNOS phosphorylation. These results suggest the importance of laminar shear stress and NO in regulating the contribution of GEnC to the permeability properties of the glomerular capillary wall.  相似文献   

6.
17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.  相似文献   

7.
The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2. In addition, PKC activation, by general activator and specifically by angiotensin II, increased the phosphorylation of p85/PI3K, which decreases its association with IRS1 and activation. Thr-86 of p85/PI3K was identified to be phosphorylated by PKC activation and confirmed to affect IRS1-mediated activation of Akt/eNOS by insulin and VEGF using a deletion mutant of the Thr-86 region of p85/PI3K. Thus, PKC and angiotensin-induced phosphorylation of Thr-86 of p85/PI3K may partially inhibit the activation of PI3K/eNOS by multiple cytokines and contribute to endothelial dysfunction in metabolic disorders.  相似文献   

8.
9.
The Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. The major intracellular signaling systems activated by Tie2 in response to Angiopoietin-1 (Ang1) include the Akt and Erk1/2 pathways. Here, we investigated the role of cholesterol-rich plasma membrane microdomains (lipid rafts) in Tie2 regulation. Tie2 could not be detected in the lipid raft fraction of human umbilical vein endothelial cells (HUVECs) unless they were first stimulated with Ang1. After stimulation, a minor fraction of Tie2 associated tightly with the lipid rafts. Treatment of HUVECs with the lipid raft disrupting agent methyl-β-cyclodextrin selectively inhibited Ang1-induced Akt phosphorylation, but not Erk1/2 phosphorylation. It has been reported that inhibition of FoxO activity is an important mechanism for Ang1-stimulated Tie2-mediated endothelial function. Consistent with this, we found that phosphorylation of FoxO mediated by Tie2 activation was attenuated by lipid raft disruption. Therefore, we propose that lipid rafts serve as signaling platforms for Tie2 receptor tyrosine kinase in vascular endothelial cells, especially for the Akt pathway.  相似文献   

10.
Keratinocytes play a critical role in maintaining epidermal barrier function. Activated protein C (APC), a natural anticoagulant with anti-inflammatory and endothelial barrier protective properties, significantly increased the barrier impedance of keratinocyte monolayers, measured by electric cell substrate impedance sensing and FITC-dextran flux. In response to APC, Tie2, a tyrosine kinase receptor, was rapidly activated within 30 min, and relocated to cell-cell contacts. APC also increased junction proteins zona occludens, claudin-1 and VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished the barrier protective effect of APC. Interestingly, APC did not activate Tie2 through its major ligand, angiopoietin-1, but instead acted by binding to endothelial protein C receptor, cleaving protease-activated receptor-1 and transactivating EGF receptor. Furthermore, when activation of Akt, but not ERK, was inhibited, the barrier protective effect of APC on keratinocytes was abolished. Thus, APC activates Tie2, via a mechanism requiring, in sequential order, the receptors, endothelial protein C receptor, protease-activated receptor-1, and EGF receptor, which selectively enhances the PI3K/Akt signaling to enhance junctional complexes and reduce keratinocyte permeability.  相似文献   

11.
The endothelial receptor tyrosine kinase (RTK) Tie1 was discovered over 20 years ago, yet its precise function and mode of action remain enigmatic. To shed light on Tie1’s role in endothelial cell biology, we investigated a potential threonine phosphorylation site within the juxtamembrane domain of Tie1. Expression of a non-phosphorylatable mutant of this site (T794A) in zebrafish (Danio rerio) significantly disrupted vascular development, resulting in fish with stunted and poorly branched intersomitic vessels. Similarly, T794A-expressing human umbilical vein endothelial cells formed significantly shorter tubes with fewer branches in three-dimensional Matrigel cultures. However, mutation of T794 did not alter Tie1 or Tie2 tyrosine phosphorylation or downstream signaling in any detectable way, suggesting that T794 phosphorylation may regulate a Tie1 function independent of its RTK properties. Although T794 is within a consensus Akt phosphorylation site, we were unable to identify a physiological activator of Akt that could induce T794 phosphorylation, suggesting that Akt is not the physiological Tie1-T794 kinase. However, the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), which is required for angiogenesis and capillary morphogenesis, was found to associate with phospho-T794 but not the non-phosphorylatable T794A mutant. Pharmacological activation of Rac1 induced downstream activation of p21-activated kinase (PAK1) and T794 phosphorylation in vitro, and inhibition of PAK1 abrogated T794 phosphorylation. Our results provide the first demonstration of a signaling pathway mediated by Tie1 in endothelial cells, and they suggest that a novel feedback loop involving Rac1/PAK1 mediated phosphorylation of Tie1 on T794 is required for proper angiogenesis.  相似文献   

12.
Angiopoietin-1 is a unique growth factor which induces Tie2 receptor autophosphorylation and interaction with signal transduction molecules, GRB2 and p85 subunit of PI 3-kinase, but no detectable mitogenic response. Here we show that PI 3-kinase-dependent activation of Akt and attachment to extracellular matrix are required for angiopoietin-1-mediated endothelial cell survival. Apoptosis of growth factor-deprived cells grown in monolayer was decreased by angiopoietin-1 and correlated with Akt activation. In contrast, angiopoietin-1, bFGF or VEGF failed to protect cells in suspension culture. Ceramide, an intermediate of several apoptotic pathways, interferes with growth factor-mediated Akt activation. Ceramide induced endothelial cell death and abolished angiopoietin-1-mediated activation of Akt and the effect on cell survival. In addition, we found that PI 3-kinase activity is necessary for migration of endothelial cells in response to Angiopoietin-1. A transient activation of MAPK/ERKs was also detected within 10 min after stimulation with angiopoietin-1. In contrast to VEGF-mediated biological effects, inhibition of MAPK/ERKs by PD98059 in endothelial cells did not affect angiopoietin-1 mediated survival or migration. These findings indicate significant differences in intracellular signaling between VEGF and angiopoietin-1 and that PI 3-kinase lipid products are key mediators of the biological effects of angiopoietin-1.  相似文献   

13.
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.  相似文献   

14.
Mechanical loading of bone induces interstitial fluid flow, leading to fluid shear stress (FSS) of osteoblasts. FSS rapidly increases the intracellular calcium concentration ([Ca(2+)]) and nitric oxide (NO) synthesis in osteoblasts and activates the protein kinase Akt. Activated Akt stimulates osteoblast proliferation and survival, but the mechanism(s) leading to Akt activation is not well defined. Using pharmacological and genetic approaches in primary human and mouse osteoblasts and mouse MC3T3 osteoblast-like cells, we found that Akt activation by FSS occurred through two parallel pathways; one required calcium stimulation of NO synthase and NO/cGMP/protein kinase G II-dependent activation of Src, and the other required calcium activation of FAK and Src, independent of NO. Both pathways cooperated to increase PI3K-dependent Akt phosphorylation and were necessary for FSS to induce nuclear translocation of β-catenin, c-fos, and cox-2 gene expression and osteoblast proliferation. These data explain how mechanical stimulation of osteoblasts leads to increased signaling through a growth regulatory pathway essential for maintaining skeletal integrity.  相似文献   

15.
Vascular endothelial growth factor (VEGF) is the only angiogenic growth factor capable of inducing an inflammatory response and we have recently demonstrated that its inflammatory effect is mediated by the endothelial synthesis of platelet-activating factor (PAF). Recently discovered, Ang1 and Ang2, upon binding to Tie2 receptor, modulate vascular permeability and integrity, contributing to angiogenesis. Ang1 was initially identified as a Tie2 agonist whereas Ang2 can behave as a context-dependent Tie2 agonist or antagonist. We sought to determine if Ang1 and/or Ang2 could modulate PAF synthesis in bovine aortic endothelial cells (BAEC) and if so, through which intracellular signalling pathways. Herein, we report that Ang1 and Ang2 (1 nM) are both capable of mediating a rapid Tie2 phosphorylation and a rapid, progressive and sustained endothelial PAF synthesis maximal within 4 h (1695% and 851% increase, respectively). Angiopoietin-mediated endothelial PAF synthesis requires the activation of the p38 and p42/44 MAPKs, PI3K intracellular signalling pathways, and a secreted phospholipase A(2) (sPLA(2)-V). Furthermore, angiopoietin-mediated PAF synthesis is partly driven by a relocalization of endogenous VEGF to the cell surface membrane. Our results demonstrate that the angiopoietins constitute another class of angiogenic factors capable of mediating PAF synthesis which may contribute to proinflammatory activities.  相似文献   

16.
Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2’s role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival.  相似文献   

17.
Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.  相似文献   

18.
Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.  相似文献   

19.
Loss of fluid shear stress (ischemia) to the lung endothelium causes endothelial plasma membrane depolarization via ATP-sensitive K(+) (K(ATP)) channel closure, initiating a signaling cascade that leads to NADPH oxidase (NOX2) activation and ROS production. Since wortmannin treatment significantly reduces ROS production with ischemia, we investigated the role of phosphoinositide 3-kinase (PI3K) in shear-associated signaling. Pulmonary microvascular endothelial cells in perfused lungs subjected to abrupt stop of flow showed membrane depolarization and ROS generation. Stop of flow in flow-adapted mouse pulmonary microvascular endothelial cells in vitro resulted in the activation of PI3K and Akt as well as ROS generation. ROS generation in the lungs in situ was almost abolished by the PI3K inhibitor wortmannin and the PKC inhibitor H7. The combination of the two (wortmannin and H7) did not have a greater effect. Activation of NOX2 was greatly diminished by wortmannin, knockout of Akt1, or dominant negative PI3K, whereas membrane depolarization was unaffected. Ischemia-induced Akt activation (phosphorylation) was not observed with K(ATP) channel-null cells, which showed minimal changes in membrane potential with ischemia. Activation of Akt was similar to wild-type cells in NOX2-null cells, which do not generate ROS with ischemia. Cromakalim, a K(ATP) channel agonist, prevented both membrane depolarization and Akt phosphorylation with ischemia. Thus, Akt1 phosphorylation follows cell membrane depolarization and precedes the activation of NOX2. These results indicate that PI3K/Akt and PKC serve as mediators between endothelial cell membrane depolarization and NOX2 assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号