首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow kinetics of L-asparaginase attached to nylon tubing   总被引:1,自引:0,他引:1  
L -Asparaginase has been attached by chemical means to the inner surface of nylon tubing. An experimental study has been carried out of the flow kinetics for such a system, asparagine solutions at various concentrations being passed through two lengths of tubing at various flow rates. Measurements were made of the concentration of the product ammonia at the tube exit, and of the rate of formation of ammonia, under the various conditions. Apparent Michaelis constants, Km(app), were some three orders of magnitude higher than the Km for the enzyme in free solution (~13 × 10?6JM). The results were analyzed with respect to the theoretical treatment described in the preceding paper (Kobayashi and Laidler), three different methods being employed. It is concluded that at lower substrate concentrations and flow rates the reactions are largely diffusion-controlled, the enhanced Km(app) values being largely if not entirely due to the diffusion control; ionic strength studies showed electrostatic repulsion effects to be unimportant. At high concentrations and high flow rates (when the diffusion layer is of negligible thickness) the diffusional effects are minimized, and Km(app) approaches the true Km value for the immobilized enzyme.  相似文献   

2.
Rabbit muscle lactate dehydrogenase (EC 1.1.1.27) was attached covalently to the inner surface of nylon tubing; a modified technique, involving benzidine and glutaraldehyde, was used, and the resulting immobilized enzyme showed no loss of activity over a period of several months. An experimental study was made of the flow kinetics for the reaction between pyruvate and reduced nicotinamide adenine dinucleotide in two limiting cases, one substrate in excess and the concentration of the other one varied. A range of flow rates and temperatures was covered. The results were analyzed in various ways on the basis of the Kobayashi--Laidler treatment of flow systems. It was concluded that the kinetics are largely diffusion-controlled, especially at the lower substrate concentrations and flow rates. The values of the apparent Michaelis constants vary with flow rate vf, being linear in vf-1/3, and the values extrapolated to infinite flow rate (vf-1/3 = 0) approach the values for the enzyme in free solution. Analysis of the rates led to activation energies for the diffusion of the two substrates.  相似文献   

3.
A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.  相似文献   

4.
For the purpose of a rational design for an automatic feedback control system incorporating a porous Teflon tubing sensor in semibatch culture, steady-state mass-transfer characteristics of tubing sensors have been investigated theoretically and experimentally, and also dynamic responses have been studied experimentally. A distributed mathematical model for steady-state diffusion has been solved numerically and its solution has been shown as useful for the sensor design. The overall mass-transfer resistance of radial diffusion has been shown to be the sum of external liquid-film mass-transfer resistance and membrane diffusion resistance. The steady-state experiments using ethanol dissolved in water revealed that its transfer into the tubing was controlled by the molecular diffusion within the tubing-wall membrane. Oxygen transfer from external water into the tubing was shown experimentally to be controlled by the liquid-film resistance outside the tubing. In general, the radial mass transfer of a substance having a small Henry's constant is controlled by the liquid-film resistance. The response of the tubing sensor-detector-recorder system for the stepwise addition of ethanol into the external water could not be represented by a simple combined system of the first-order delay with lag time. The responses depend on the characteristics of the tubing as well as flow rate of the carrier gas, etc., but they were quite excellent in all cases (e.g., 90% in 20 s).  相似文献   

5.
A “polarographic” technique by which the rate of outward diffusion of oxygen from plant roots may be measured, is described in detail. Oxygen has been found to diffuse from the roots of all of the ten species of bog-plants so far tested, and the oxygen diffusion rates (ODR) of eight of these species show the existence of interspecific differences. Model roots made from silicone rubber tubing give “polarographs” identical with those obtained around the living roots. Suberization accompanying root maturation is thought to account for a. the association of oxygen diffusion with the apical regions of roots, and b. the lowered diffusion rates associated with winter dormancy. This localisation of root oxygen diffusion may be of survival value in reduced soils. Experiments suggest that aerenchyma can function as an oxygen reservoir in the plant if the stomata were closed for long periods. Calculations of expected ODR based on the internal gas concentrations of a model system give readings very similar to the ODR obtained experimentally using the silicone rubber tubing models. Further calculations, based on reported internal gas concentrations for Menyanthes, rice, Spartina, and Schoenus, also show a close similarity between real and expected values. It is concluded that in these species at least, there is negligible resistance in certain regions of the root to the passage of oxygen from the root intercellular spaces to the surrounding medium. Results have shown that root bases are relatively impermeable to oxygen, and it is suggested that oxygen intake into roots in the basal regions reported by other workers, probably occurs through basally-borne laterals. One important function of diffusing oxygen from the root is probably the supply of an external source of oxygen to the root meristem.  相似文献   

6.
T J Wheeler  J D Whelan 《Biochemistry》1988,27(5):1441-1450
It has been claimed that the Km for infinite-cis uptake of glucose in human erythrocytes is so low that the carrier model for transport must be rejected. We redetermined this parameter for three experimental conditions and found instead that the Km values were in good agreement with the model. For each of a variety of cis glucose concentrations, cells were preequilibrated with various concentrations of glucose, and the apparent Km was determined as the intracellular concentration reducing the initial rate of net uptake by half. The dependence of the apparent Km values on the cis glucose was as predicted by the carrier model; the infinite-cis Km was determined from both this concentration dependence and the extrapolated value at infinite cis glucose. The resulting values were 15 mM for fresh blood at 0 degrees C, 39 mM for outdated blood at 0 degrees C, and 11 mM for outdated blood at 25 degrees C. Previous measurements of the Km at room temperature yielded values of 2-3 mM. These earlier studies used a time course procedure that indicated rapid changes in rates during the initial 10 s of uptake but did not directly measure such changes. We examined the uptake of 60 mM glucose at 20 degrees C into cells containing 0 and 5 mM glucose; rapid changes in rates were not observed in the first few seconds, and the time courses were more consistent with our higher Km values. Our new values, together with other initial rate measurements in the literature, support the adequacy of the carrier model to account for the kinetics of glucose transport in human erythrocytes.  相似文献   

7.
Synechococcus glutamate-1-semialdehyde aminotransferase was expressed in large amounts in transformed cells of Escherichia coli. The resulting purified enzyme has an absorption spectrum characteristic of B6-containing enzymes and could be converted to the pyridoxal-phosphate form with excess dioxovalerate (O2Val), and back to the pyridoxamine-phosphate form with diaminovalerate (A2Val). Both enzyme forms are similarly active in the conversion of glutamate 1-semialdehyde (GSA) to 5-aminolevulinate (ALev), suggesting that A2Val and O2Val are intermediates. Initial rates of ALev synthesis at various fixed concentrations of GSA followed typical Michaelis-Menten kinetics (Km of GSA for the pyridoxamine-phosphate form of GSA aminotransferase = 12 microM, kcat = 0.23 s-1). In submicromolar amounts A2Val stimulates ALev synthesis, and in a series of concentrations with various fixed concentrations of GSA, gives a family of parallel lines in Lineweaver-Burk plots (Km for A2Val = 1.0 microM). On the other hand, O2Val gives competitive inhibition of the pyridoxamine-phosphate form of GSA-aminotransferase and mixed-type inhibition of the pyridoxal-phosphate form (Ki for O2Val = 1.4 mM). In general the kinetics were typical of ping-pong bi-bi mechanisms in which A2Val is the second substrate (intermediate) and O2Val is an alternative first substrate. There is no compelling evidence that O2Val accepts an amino group at its C5 position resulting in the direct formation of ALev, or the reverse involving the apparent formation of O2Val from ALev. These results are consistent with the hypothesis that the mechanism of GSA aminotransferase mimics that of other aminotransferases and that A2Val is the intermediate.  相似文献   

8.
Cytosine permeation in Saccharomyces cerevisiae has been studied. Cytosine uptake is mediated by a permease which is also responsible for purines transport. The Km for the transport of various substrates of this permease have been determined. By means of appropriate selective techniques, mutants with altered Km and mutants lacking the permease have been selected. Cytosine transport is active and is inhibited by 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation, and by N-ethylmaleimide, a reagent of--SH group. Internal labeled cytosine is chased by addition of unlabeled cytosine in the medium. These results support the hypothesis of a carrier-mediated transport, with reduced internal affinity, allowing the release and accumulation of cytosine in the inner compartment. The efflux of cytosine from cytosine permease-less cells has also been studied and shows first order kinetics. A diffusion coefficient of 5.7 per 10- minus 8 cm per S- minus 1 has been evaluated for this efflux.  相似文献   

9.
The kinetic constants for large neutral amino acid (LNAA) transport across the blood-brain barrier (BBB) of conscious rats were determined in four brain regions: cortex, caudate-putamen, hippocampus, and thalamus-hypothalamus. Indwelling external carotid artery catheters allowed for single-bolus (200 microliters) injections directly into the arterial system of unanesthetized and lightly restrained animals. Our results showed lower brain uptake index values for conscious rats compared to previous reports for anesthetized animals which are consistent with higher rates of cerebral blood flow in the conscious animals. Km values were lower in the conscious animals and ranged from 29% to 87% of the Km values in pentobarbital-anesthetized animals whereas the KD values were about twofold higher in the conscious animals. No apparent regional differences were observed. Influx rates were determined which take into consideration flow rates and plasma amino acid concentrations. Our results showed an average amino acid influx value of 5.2 nmol/min/g, which is 53% higher than the average influx in pentobarbital-anesthetized animals. The present results in conscious animals regarding the low Km of LNAA transport across the BBB lend further support to the importance of fluctuations in plasma amino acid concentrations and LNAA transport competitive effects on brain amino acid availability.  相似文献   

10.
Hybridoma cell growth and monoclonal antibody production in dialyzed continuous suspension culture were investigated using a 1.5-L Celligen bioreactor. Medium supplemented with 1.5% fetal bovine serum was fed directly into the reactor at a dilution rate of 0.45 d(-1). Dailysis tubing with a molecular weight cut-off (MWCO) of 1000 was coiled inside the bioreactor. Fresh medium containing no serum or serum substitues passed through the dialysis tubing at flow rates of 2 to 5 L/d. The objective was to remove low molecular weight inhibitors, such as lactic acid and ammonia, by diffusion through the tubing, while continuoulsy replenishing essential nutrients by the same mechanism. Due to the low MWCO of the dialysis tubing high molecular weight components such as growth factors and antibody were not removed by the dialyzing stream. In the batch start-up phase, the monoclonal antibody (MAb) titer was almost 3 times that achieved in typical batch cultures (i.e., 170 to 180 mg/L). During dialyzed continuous operation, a substantial increase (up to 40%) in cell density, monoclonal antibody (MAb) titer, and reactor MAb productivity was observed, as compared with a conventional continuous suspension culture. The cell viability and the specific MAb productivity remained practically constant at different dialysis rates. This finding suggests that the steady state growth and death rate in continuous suspension hybridoma cultures are not direct functions of the nutrient or inhibitor concentrations.  相似文献   

11.
The enzyme beta-glucosidase was attached covalently to the inner surface of nylon tubing. Flow kinetic studies were carried out at a range of temperatures, pH values, flow rates, and substrate concentrations. Various tests showed that the extent of diffusion control was negligible. At 25 degrees C the Michaelis constant was 33.4 mM, not greatly different from the value for the enzyme in free solution. The pH dependence was similar to that for the free enzyme. The Arrhenius plots showed inflexions at about 22 degrees C, as with the free enzyme, the changes in slope being small at the pH optimum of about 5.9 and becoming much more pronounced as the pH is increased or decreased. The immobilized enzyme is more stable than the free enzyme, both on storage at low and higher temperatures, and its reuse stability is greater.  相似文献   

12.
Microcalorimetry has been used to determine the affinity of whole cells of Escherichia coli for glucose, galactose, fructose, and lactose. Anaerobic growth thermograms were analyzed, and the Km and Vmax values for these energy substrates were measured at pH 7.8. Results obtained with this technique using various organisms growing anaerobically on different sugars are compared. This comparison shows that in practically all cases the cellular rate of catabolic activity is a hyperbolic function of the energy substrate concentrations at low sugar concentrations. In some cases this technique also allows determination of kinetics at high sugar concentrations.  相似文献   

13.
A TdR carrier-transport system, believed to be facilitated diffusion, has been shown to exist in Ehrlich ascites tumour cells. It is suggested that this system is the predominant transport mechanism at low extracellular concentrations (less than 1-5 micron). The transport system was damaged considerably by 5 krad X-radiation, resulting in a 30-35 per cent reduction in the initial total TdR uptake rat at low extracellular concentrations and 15-20 min after irradiation. The extent of the damage was dependent on the age of the cells as was reflected by relative decreases in V max and Km. It can be concluded that the enhanced depression in 14C-TdR incorporation into DNA of irradiated cells when low precursor concentrations were used for monitoring, is partly attributed to the radiation-induced damage to the carrier-transport system. The permeability constant for passive diffusion in asynchronous E.A.T. cells and the endogenous natural rate of dTTP synthesis in S-phase cells were estimated.  相似文献   

14.
The intestinal absorption kinetics of three neutral amino acids, leucine, cycloleucine and alpha-aminoisobutyric acid, has been studied in rat jejunum in vivo, with luminal perfusion during successive periods, by measuring the passive component and the active transport. The mass-transfer coefficients of the passive process, are similar for the three amino acids and increase with the perfusion rate. The transport component, obtained from the difference between total absorption and passive diffusion, shows saturation kinetics and also increases with the perfusion rate. The apparent Michaelis constants, Km, and the maximal transport rates for the three amino acids have been determined. The Km values are greater than those reported for in vitro studies, a result imputable to greater thickness of the unstirred layers in vivo and to the unequal signification of the constant in both conditions. Passive flux has proved to be an important component for in vivo absorption, even at low substrate concentrations (1-5 mM), so that its evaluation cannot be neglected for the calculation ot the kinetic constants of the mediated transport.  相似文献   

15.
Drug permeation across the plasma membrane of multidrug-resistant cells depends on the kinetics of the P-glycoprotein-mediated pump activity as well as on the passive permeation of the drug. We here demonstrate a method to characterize kinetically the pump in intact cells. To this purpose, we examined the membrane-transport properties of daunorubicin in various sensitive cancer cell lines and in their multidrug resistant (MDR) counterparts. First, we determined the passive permeability coefficient for daunorubicin. Then, using a flow-through system, the drug flux into the cell was measured after inhibition of the P-glycoprotein-mediated efflux pump. Combining the two results allowed us to calculate the intracellular free concentration of the drug. In the steady-state, the pump rate must equal the net rate of passive diffusion of the drug and, therefore, the same experiments gave us the pumping rate of daunorubicin. These experiments were then repeated at various extracellular drug concentrations. By plotting the pumping rate versus the intracellular drug concentration, we then characterized the P-glycoprotein kinetically. Four independent methods were used to measure the passive permeability coefficient for the cell line A2780. Similar values were obtained. Maximal pump rates (Vmax) showed a good correlation with the amount of P-glycoprotein in the cell lines used. We obtained saturation curves for the variation of the pump rates with the intracellular daunorubicin concentrations. These curves were typical for positive cooperativity, which provides evidence that at least two binding sites for daunorubicin are present on the active transport system of daunorubicin. The apparent Km values for P-glycoprotein-mediated transport, the intracellular free cytosolic daunorubicin concentrations at half-maximal velocity for the cell lines used, were approximately 1.5 microM. Except for the cell lines with the highest amount of P-glycoprotein, the passive efflux rate of daunorubicin proved to be a substantial part of the total daunorubicin efflux rate for the cell lines used. In cell lines with relatively low levels of P-glycoprotein, passive daunorubicin efflux was even the main route of daunorubicin transport from the cells, determining the intracellular steady-state concentrations of daunorubicin.  相似文献   

16.
l-amino acid oxidases of Proteus rettgeri.   总被引:4,自引:2,他引:2       下载免费PDF全文
Proteus rettgeri has been found to contain two separable 1-amino acid oxidases. Both enzymes are particulate in nature, neither being ribosomal bound. One of these enzymes appears to have broad specificity, being active toward monoaminomonocarboxylic, imino, aromatic, sulfur-containing, and beta-hydroxyamino acids. The other enzyme has more limited specificity, catalyzing the oxidative deamination of the basic amino acids and citrulline. The affinity of this oxidase for the various substrates at pH 7.6 in decreasing order is arginine, histidine, ornithine, citrulline, and lysine. This enzyme has a particularly high affinity for arginine (Km equal to 0.27 mM), and anomalous kinetics are observed with increasing substrate concentrations. When concentrations of arginine greater than 1.0mM were added to the reaction containing histidine, imidazole pyruvate formation was completely inhibited.  相似文献   

17.
Extractive acetone-butanol-ethanol (ABE) fermentation was carried out successfully using pervaporation and a low-acid-producing Clostridium acetobutylicum B18. A pervaporation module with 0.17 m(2) of surface area was made of silicone membrane of 240 mum thickness. Pervaporation experiments using make-up solutions showed that butanol and acetone fluxes increased linearly with their concentrations in the aqueous phase. Fickian diffusion coefficients were constants for fixed air flow rates, and increased at higher sweep air flow rates. During batch and fed-batch fermentations, pervaporation at an air flow rate of 8 L/min removed butanol and acetone efficiently. Butanol concentration was maintained below 4.5 g/L even though Clostridium acetobutylicum B18 produced butanol steadily. Pervaporation could not remove organic acids efficiently, but organic acids did not accumulate because strain B18 produced little organic acid and recycled added organic acids efficiently. With pervaporation, glucose consumption rate increased compared to without pervaporation, and up to 160 g/L of glucose was consumed during 80 h. Cell growth was not inhibited by possible salt accumulation or oxygen diffusion through the silicone tubing. The culture volume was maintained relatively constant during fed-batch operation because of an offsetting effect of water and product removal by pervaporation and addition of nutrient supplements. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
The rates of the forward and reverse reactions of triosephosphate isomerase catalyzed by the wild-type and by a sluggish mutant enzyme have been studied in the absence and the presence of several viscosogenic agents. For the mutant enzyme, the kcat for which is some 10(3) times less than that for the wild-type enzyme, the value of kcat/Km with glyceraldehyde phosphate as substrate is almost unaffected by the presence of sucrose or glycerol, even though the concentration of the aldehyde form of the substrate is smaller because of hemiacetal formation. [The nature and relative amounts of the various forms of triose phosphate present in solution (free carbonyl forms, hydrates, dimers, hemiacetal adducts) have been evaluated by 31P NMR and are presented in the Appendix.] The viscosogenic agents cause the substrate to bind more tightly to the enzyme, roughly compensating for the lower substrate concentration. With dihydroxyacetone phosphate as substrate, the values of kcat/Km for the mutant enzyme increase with the addition of viscosogenic agent, consistent with the tighter binding of substrate without (in this case) any concomitant loss due to hemiketal formation. These results for the mutant enzyme (known to be limited in rate by an enolization step in the catalytic mechanism) can be used to interpret the behavior of the wild-type enzyme. Plots of the relative values of kcat/Km for catalysis by the wild-type enzyme (normalized with the corresponding data for the mutant enzyme) against the relative viscosity have slopes close to unity, as predicted by the Stokes-Einstein equation for a cleanly diffusive process. In the presence of polymeric viscosogenic additives such as poly(ethylene glycol), polyacrylamide, or ficoll, no effect on kcat/Km is seen for the wild-type enzyme, consistent with the expectation that molecular diffusion rates are unaffected by the macroviscosity and are only slowed by the presence of smaller agents that raise the microviscosity. These results show that the reaction catalyzed by the wild-type triosephosphate isomerase is limited by the rate at which glyceraldehyde phosphate encounters, or departs from, the active site.  相似文献   

19.
Microdialysis catheters (CMA-60 with a polyamide dialysis membrane; 20,000-molecular wt cutoff) were either immersed in an external medium or were inserted in the quadriceps femoris muscle of healthy subjects, using perfusate with or without dextran 70. Varying the position of the outflow tubing induced changes in hydrostatic pressure. The sample volumes were significantly smaller in catheters perfused without a colloid compared with those perfused with a colloid [11-50% (in vitro) and 8-59% (in vivo) lower than in colloid-perfused catheters with the same position of the outflow tubing]. The sample volumes were also significantly smaller when the dialysis membrane was influenced by maximal hydrostatic pressure (above position) compared with minimal hydrostatic pressure (below position) [7-38% (in vitro) and 3-46% (in vivo) lower than in catheters in the below position with the same perfusion fluid]. In vivo, glucose concentration at a perfusion flow rate of 0.33 microl/min was higher when the catheters were perfused without a colloid [18-28% higher than in colloid-perfused catheters with the same position of the outflow tubing (P < 0.001)] than with a colloid. A corresponding difference also tended to occur with lactate, glycerol, and urea. At 0.16 microl/min, the glucose concentration was the same irrespective of whether fluid loss had been counteracted by colloid inclusion or by lowering of outlet tubing. The mechanism behind the observed concentration difference is thought to be a higher effective perfusion flow rate when fluid loss is prevented at low-perfusion flows. This study shows that fluid imbalances can have important implications for microdialysis results at low-perfusion flow rates.  相似文献   

20.
A minimal catalytic cycle for cytochrome c oxidase has been suggested, and the steady-state kinetic equation for this mechanism has been derived. This equation has been used to simulate experimental data for the pH dependence of the steady-state kinetic parameters, kcat and Km. In the simulations the rate constants for binding and dissociation of cytochrome c and for two internal electron-transfer steps have been allowed to vary, whereas fixed experimental values (for pH 7.4) have been used for the other rate constants. The results show that the dissociation of the product, ferricytochrome c, cannot be rate-limiting under all conditions, but that intramolecular electron-transfer steps also limit the rate. They also demonstrate that Km can differ considerably from the dissociation constant for the cytochrome c-oxidase complex. Published values for the rate constant for the dissociation of ferricytochrome c are too small to account for the steady-state rates. It is suggested that, at high concentrations, ferryocytochrome c transfers an electron to a cytochrome c molecule which remains bound to the oxidase. This can also explain the nonhyperbolic kinetics, which is observed at low substrate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号