首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bind specifically to nicked DNA over intact duplex DNA. One of these modules comprises the zinc finger domain and DNA-binding domain, which function together as a single DNA binding unit. The catalytic core of ligase III is the second DNA nick-binding module. Both binding modules are required for ligation of blunt ended DNA substrates. Although the zinc finger increases the catalytic efficiency of nick ligation, it appears to occupy the same binding site as the DNA ligase III catalytic core. We present a jackknife model for ligase III that posits conformational changes during nick sensing and ligation to extend the versatility of the enzyme.  相似文献   

2.
Applied Microbiology and Biotechnology - In this study, extended artificial scaffoldins possessing multiple cohesin modules were created in vivo by employing split-intein-mediated protein ligation....  相似文献   

3.
Generation of a catalytic module on a self-folding RNA   总被引:1,自引:0,他引:1       下载免费PDF全文
It is theoretically possible to obtain a catalytic site of an artificial ribozyme from a random sequence consisting of a limited numbers of nucleotides. However, this strategy has been inadequately explored. Here, we report an in vitro selection technique that exploits modular construction of a structurally constrained RNA to acquire a catalytic site for RNA ligation from a short random sequence. To practice the selection, a sequence of 30 nucleotides was located close to the putative reaction site in a derivative of a naturally occurring self-folding RNA whose crystal structure is known. RNAs whose activity depended on the starting three-dimensional structure were selected with 3'-5' ligation specificity, indicating that the strategy can be used to acquire a variety of catalytic sites and other functional RNA modules.  相似文献   

4.
Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385–392, 2016.  相似文献   

5.
How fibronectin (FN) converts from a compact plasma protein to a fibrillar component of extracellular matrix is not understood. "Functional upstream domain" (FUD), a polypeptide based on F1 adhesin of Streptococcus pyogenes, binds by anti-parallel β-strand addition to discontinuous sets of N-terminal FN type I modules, (2-5)FNI of the fibrin-binding domain and (8-9)FNI of the gelatin-binding domain. Such binding blocks assembly of FN. To learn whether ligation of (2-5)FNI, (8-9)FNI, or the two sets in combination is important for inhibition, we tested "high affinity downstream domain" (HADD), which binds by β-strand addition to the continuous set of FNI modules, (1-5)FNI, comprising the fibrin-binding domain. HADD and FUD were similarly active in blocking fibronectin assembly. Binding of HADD or FUD to soluble plasma FN exposed the epitope to monoclonal antibody mAbIII-10 in the tenth FN type III module ((10)FNIII) and caused expansion of FN as assessed by dynamic light scattering. Soluble N-terminal constructs truncated after (9)FNI or (3)FNIII competed better than soluble FN for binding of FUD or HADD to adsorbed FN, indicating that interactions involving type III modules more C-terminal than (3)FNIII limit β-strand addition to (1-5)FNI within intact soluble FN. Preincubation of FN with mAbIII-10 or heparin modestly increased binding to HADD or FUD. Thus, ligation of FNIII modules involved in binding of integrins and glycosaminoglycans, (10)FNIII and (12-14)FNIII, increases accessibility of (1-5)FNI. Allosteric loss of constraining interactions among (1-5)FNI, (10)FNIII, and (12-14)FNIII likely enables assembly of FN into extracellular fibrils.  相似文献   

6.
The cell adhesion molecules NCAM and L1 are considered to play key roles in neuronal development and plasticity. L1 has been shown to interact with NCAM, possibly through NCAM binding to oligomannosidic glycans present in L1. We investigated the effect of recombinant immunoglobulin (Ig) modules of NCAM involved in homophilic NCAM binding, on L1 induced neurite outgrowth from PC12-E2 cells and found a complete inhibition of L1 induced neurite outgrowth after addition of Ig-modules 1, 2 and 3 of NCAM, suggesting that the ligation state of NCAM is crucial for normal L1 signaling.  相似文献   

7.
A L Brown  W Szybalski 《Gene》1985,39(2-3):121-127
An active nutR antiterminator was reconstructed from two synthetic modules, one containing the 8-bp boxA (5'-CGCTCTTA) and the other the 17-bp nutR core (5'-AGCCCTGAAAAAGGGCA) sequence. The modules were synthesized with HindIII cohesive ends, which upon annealing and ligation created an 8-bp spacer (5'-CAAAGCTT) between the boxA and nutR core. The 8-bp length was the same as in the native nutR (5'-CACATTCC), but the sequence showed less than 38% homology. The antitermination mediated by the synthetic nutR, was 68-80% efficient when tested in the pp-nutR-N-tL1-galK expression plasmid, analogous to that used by Drahos and Szybalski [Gene, 16 (1981) 261-274]. The cloned boxA by itself has no activity, while the nutR core alone shows only marginal (5-10%) antiterminator function. Increasing the distance between boxA and the nutR core from 8 bp to 20-28 bp, i.e., by one to two turns of the DNA helix (about 10 bp per turn), has little effect on the antiterminator function, whereas use of spacers with length about halfway between 8 and 20 bp results in reduced antitermination. It appears that both the sequences and spacial arrangement of the boxA and nut elements are important for efficient antiterminator function.  相似文献   

8.
A L Brown  W Szybalski 《Gene》1986,42(1):E125-E132
An active nutR antiterminator was reconstructed from two synthetic modules, one containing the 8-bp boxA (5'-CGCTCTTA) and the other the 17-bp nutR core (5'-AGCCCTGAAAAAGGGCA) sequence. The modules were synthesized with HindIII cohesive ends, which upon annealing and ligation created an 8-bp spacer (5'-CAAAGCTT) between the boxA and nutR core. The 8-bp length was the same as in the native nutR (5'-CACATTCC), but the sequence showed less than 38% homology. The antitermination mediated by the synthetic nutR was 68-80% efficient when tested in the pp-nutR-N-tL1-galK expression plasmid, analogous to that used by Drahos and Szybalski [Gene, 16 (1981) 261-274]. The cloned boxA by itself has no activity, while the nutR core alone shows only marginal (5-10%) antiterminator function. Increasing the distance between boxA and the nutR core from 8 bp to 20-28 bp, i.e., by one to two turns of the DNA helix (about 10 bp per turn), has little effect on the antiterminator function, whereas use of spacers with length about halfway between 8 and 20 bp results in reduced antitermination. It appears that both the sequences and spacial arrangement of the boxA and nut elements are important for efficient antiterminator function.  相似文献   

9.
Quan J  Tian J 《Nature protocols》2011,6(2):242-251
High-throughput genomics, proteomics and synthetic biology studies require ever more efficient and economical strategies to clone complex DNA libraries or variants of biological modules. In this paper, we provide a protocol for a sequence-independent approach for cloning complex individual or combinatorial DNA libraries, and routine or high-throughput cloning of single or multiple DNA fragments. The strategy, called circular polymerase extension cloning (CPEC), is based on polymerase overlap extension and is therefore free of restriction digestion, ligation or single-stranded homologous recombination. CPEC is highly efficient, accurate and user friendly. Once the inserts and the linear vector have been prepared, the CPEC reaction can be completed in 10 min to 3 h, depending on the complexity of the gene libraries.  相似文献   

10.
The introduction of non‐natural modules could provide unprecedented control over folding/unfolding behavior, conformational stability, and biological function of proteins. Success requires the interrogation of candidate modules in natural contexts. Here, expressed protein ligation is used to replace a reverse turn in bovine pancreatic ribonuclease (RNase A) with a synthetic β‐dipeptide: β2‐homoalanine–β3‐homoalanine. This segment is known to adopt an unnatural reverse‐turn conformation that contains a 10‐membered ring hydrogen bond, but one with a donor–acceptor pattern opposite to that in the 10‐membered rings of natural reverse turns. The RNase A variant has intact enzymatic activity, but unfolds more quickly and has diminished conformational stability relative to native RNase A. These data indicate that hydrogen‐bonding pattern merits careful consideration in the selection of beneficial reverse‐turn surrogates.  相似文献   

11.
We have examined the ability of the CD3-gamma delta epsilon and CD3-zeta signaling modules of the T cell receptor (TCR) to couple CD38 to intracellular signaling pathways. The results demonstrated that in TCR+ T cells that express the whole set of CD3 subunits CD38 ligation led to complete tyrosine phosphorylation of both CD3-zeta and CD3-epsilon polypeptide chains. In contrast, in TCR+ cells with a defective CD3-zeta association CD38 engagement caused tyrosine phosphorylation of CD3-epsilon but not of CD3-zeta. Despite these differences, in both cell types CD38 ligation resulted in protein-tyrosine kinase and mitogen-activated protein kinase activation. However, in cells expressing chimerical CD25-zeta or CD25-epsilon receptors or in a TCR-beta- Jurkat T cell line, CD38 ligation did not result in tyrosine phosphorylation of the chimeric receptors, or CD3 subunits, or protein-tyrosine kinase or mitogen-activated protein kinase activation. In summary, these results support a model in which CD38 transduces activating signals inside the cell by means of CD3-epsilon and CD3-zeta tyrosine phosphorylation. Moreover, these data identify the CD3-gamma delta epsilon signaling module as a necessary and sufficient component of the TCR/CD3 complex involved in T cell activation through CD38.  相似文献   

12.
The biotechnological application of enzymes necessitates a permanent quest for new biocatalysts. Among others, improvement of catalytic activity, modification of substrate specificity, or increase in stability of the enzymes are desirable goals. The exploration of homologous enzymes from various sources or DNA-based methods, like site-directed mutagenesis or directed evolution, yield an incredible variety of biocatalysts but they all rely on the restricted number of canonical amino acids. Chemistry offers an almost unlimited palette of additional modifications which can endow the proteins with improved or even completely new properties. Numerous techniques to furnish proteins with non-natural amino acids or non-proteinogenic modules have been introduced and are reviewed with special focus on expressed protein ligation, a method that combines the potential of protein biosynthesis and chemical synthesis. An erratum to this article can be found at  相似文献   

13.
Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3'-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3'-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3'-OH nucleoside in the catalysis of DNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig.  相似文献   

14.
We have examined the effects of portal branch ligation on liver mitochondrial function and on subsequent extended hepatectomy in rat. In the occluded lobes, mitochondrial function was depressed immediately after the ligation. In the unoccluded lobes, mitochondrial function was enhanced and reached the maximum two days after the ligation. This enhancement was associated with increases in the enzymic activities and subunit amounts of the energy-transducing complexes, and with increase in mitochondrial DNA content. The ligation improved both survival rate and mitochondrial redox state monitored by the ratio of acetoacetate to beta-hydroxybutyrate after hepatectomy. These results suggest that the enhancement of mitochondrial function by portal branch ligation fills the energy demand for liver regeneration.  相似文献   

15.
Chemical ligation methods for the assembly of functional proteins continue to advance our basic understanding of protein structure and function. In this work, we report on our progress towards the full synthesis of HIV-1 Tat utilizing our newly developed ligation method; side-chain assisted ligation. The HIV-1 Tat was assembled from three fragments wherein the two thioester peptides were synthesized efficiently using the side-chain anchoring strategy following Fmoc-SPPS. The side-chain assisted ligation step was efficient and provided the ligation product in good yield. Following this step, native chemical ligation was used to fully assemble the HIV-1 Tat protein. Although the removal of the auxiliary in small peptides was straightforward, in the case of HIV-1 Tat this step was inefficient thus hampering the completion of the synthesis.  相似文献   

16.
ABSTRACT: BACKGROUND: Molecular cloning of DNA fragments >5 kbp is still a complex task. When no genomic DNA library is available for the species of interest, and direct PCR amplification of the desired DNA fragment is unsuccessful or results in an incorrect sequence, molecular cloning of a PCR-amplified region of the target sequence and assembly of the cloned parts by restriction and ligation is an option. Assembled components of such DNA fragments can be connected together by ligating the compatible overhangs produced by different restriction endonucleases. However, designing the corresponding cloning scheme can be a complex task that requires a software tool to generate a list of potential connection sites. FINDINGS: The BIOF program presented here analyzes DNA fragments for all available restriction enzymes and provides a list of potential sites for ligation of DNA fragments with compatible overhangs. The cloning scheme, which is called modular assembly cloning (MAC), is aided by the BIOF program. MAC was tested on a practical dataset, namely, two non-coding fragments of the translation elongation factor 1 alpha gene from Chinese hamster ovary cells. The individual fragment lengths exceeded 5 kbp, and direct PCR amplification produced no amplicons. However, separation of the target fragments into smaller regions, with downstream assembly of the cloned modules, resulted in both target DNA fragments being obtained with few subsequent steps. CONCLUSIONS: Implementation of the MAC software tool and the experimental approach adopted here has great potential for simplifying the molecular cloning of long DNA fragments. This approach may be used to generate long artificial DNA fragments such as in vitro spliced cDNAs.  相似文献   

17.
Ligation of FcgammaR concurrent with LPS stimulation of murine macrophages results in decreased IL-12 and increased IL-10 production. Because PI3K deficiency has been associated with increased IL-12, we hypothesized that PI3K was central to the anti-inflammatory effect of FcgammaR ligation on TLR-induced IL-12. FcgammaR ligation of macrophages increased pAKT, a correlate of PI3K activity, above levels induced by TLR4 or TLR2 agonists. This increase was blocked by PI3K inhibitors, wortmannin or LY294002, as was the effect of FcgammaR ligation on TLR-induced IL-12 and IL-10. LPS-induced binding of NF-kappaB to the IL-12 p40 promoter NF-kappaB-binding site was not affected by FcgammaR ligation at 1 h; however, by 4 h, NF-kappaB binding was markedly inhibited, confirmed in situ by chromatin immunoprecipitation analysis. This effect was wortmannin sensitive. Although TLR-induced IkappaBalpha degradation was not affected by FcgammaR ligation, IkappaBalpha accumulated in the nuclei of cells treated with LPS and FcgammaR ligation for 4 h, and was blocked by PI3K inhibitors. LPS-induced IFN regulatory factor-8/IFN consensus sequence-binding protein mRNA, and an IFN regulatory factor-8-dependent gene, Nos2, were inhibited by concurrent FcgammaR ligation, and this was also reversed by wortmannin. Thus, FcgammaR ligation modulates LPS-induced IL-12 via multiple PI3K-sensitive pathways that affect production, accumulation, and binding of key DNA-binding proteins required for IL-12 induction.  相似文献   

18.
The first living systems may have employed template-directed oligonucleotide ligation for replication. The utility of oligonucleotide ligation as a mechanism for the origin and evolution of life is in part dependent on its fidelity. We have devised a method for evaluating ligation fidelity in which ligation substrates are selected from random sequence libraries. The fidelities of chemical and enzymatic ligation are compared under a variety of conditions. While reaction conditions can be found that promote high fidelity copying, departure from these conditions leads to error-prone copying. In particular, ligation reactions with shorter oligonucleotide substrates are less efficient but more faithful. These results support a model for origins in which there was selective pressure for template-directed oligonucleotide ligation to be gradually supplanted by mononucleotide polymerization.  相似文献   

19.
We report the use of small circular DNA as a triplex-directing template for the highly efficient chemical ligation of oligodeoxyribonucleotides (ODNs) using cyanogen bromide (BrCN). These investigations compared the use of a linear homopyrimidine DNA template (17mer) and a circular pyrimidine-rich DNA template (44mer) for directing the chemical ligation of two homopurine ODNs (6mer + 11mer). The effects of substrate/template ratio, buffer, salt, ionic strength, pH and temperature have been examined in the BrCN activated ligation reactions. The optimal yield of 51% for ligation on the linear template was at pH 6.0, 200 mM MgCl2, 4 degreesC. In contrast, near quantitative ligation on the circular template occurred at higher pH, higher temperature, and showed less dependence on Mg2+concentration (97% yield, pH 7.5, 200 mM MgCl2, 25 degreesC). The relative observed rate of the ligation reaction was a minimum of 35 times faster on the circular DNA template relative to the linear template at pH 7.5, 200 mM MgCl2, 4 degreesC. These investigations reveal that chemical ligation of short ODNs on circularized DNA templates through triplex formation is a highly efficient process over a broad range of conditions.  相似文献   

20.
We combined three modern technologies of single base polymorphism detection in human genome: ligase detection reaction, rolling circle amplification and IMAGE hydro-gel microarrays. Polymorphism in target DNA was tested by selective ligation on microarray. Product of the ligase reaction was determined in microarray gel pads by rolling circle amplification. Two different methods were compared. In first, selective ligation of short oligonucleotides immobilized on microarray was used with subsequent amplification on preformed circle probe ("common circle"). The circle probe was designed especially for human genome research. In second variant, allele-specific padlock probes that may be circularized by selective ligation were immobilized on microarray. Polymorphism of codon 72 in human p53 gene was used as a biological model. It was shown that LDR/RCA on microarray is a quantitative reaction and gives high discrimination of alleles. Principles and perspectives of selective ligation and rolling circle amplification are being discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号