首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since direct analysis of many aspects of spliceosomal function is greatly hindered by the daunting complexity of the spliceosome, the development of functionally validated simple model systems can be of great value. The critical role played by a base-paired complex of U6 and U2 snRNAs in splicing in vivo suggests that this complex could be a suitable starting point for the development of such a simple model system. However, several criteria must be satisfied before such a snRNA-based in vitro system can be considered a valid model for the spliceosomal catalytic core, including similarities at the level of reaction chemistry and cationic and sequence requirements. Previous functional analyses of in vitro assembled base-paired complexes of human U2 and U6 snRNAs have been promising, providing insight into catalysis. Furthermore, they strongly suggest that with further optimization, these RNAs might indeed be able to recapitulate the function of the spliceosomal catalytic core, thus opening the door to several lines of study not previously possible.  相似文献   

2.
The spliceosome: a ribozyme at heart?   总被引:4,自引:0,他引:4  
The spliceosome, the multi-megadalton molecular machine that performs splicing, consists of over 200 different proteins and five small nuclear RNAs (snRNAs). Extensive mechanistic and structural similarities to self-splicing group II introns, large ribozymes found in prokaryotes and lower eukaryotes that catalyze an identical reaction, strongly suggest that the spliceosomal RNAs are in fact the catalytic components of the spliceosome. Of the five spliceosomal RNAs, U2 and U6 are the only ones that are absolutely required for both steps of splicing. These two snRNAs form an elaborate base-paired complex that might in fact constitute the active site of the spliceosome.  相似文献   

3.
The removal of introns from pre-messenger RNA is mediated by the spliceosome, a large complex composed of many proteins and five small nuclear RNAs (snRNAs). Of the snRNAs, the U6 and U2 snRNAs are the most conserved in sequence, as they interact extensively with each other and also with the intron, in several base pairings that are necessary for splicing. We have isolated and sequenced the genes encoding both U6 and U2 snRNAs from the intracellularly parasitic microsporidian Nosema locustae . Both genes are expressed. Both RNAs can be folded into secondary structures typical of other known U6 and U2 snRNAs. In addition, the N.locustae U6 and U2 snRNAs have the potential to base pair in the functional intermolecular interactions that have been characterized by extensive analyses in yeast and mammalian systems. These results indicate that the N.locustae U6 and U2 snRNAs may be functional components of an active spliceosome, even though introns have not yet been found in microsporidian genes.  相似文献   

4.
Characterization of the catalytic activity of U2 and U6 snRNAs   总被引:5,自引:3,他引:2       下载免费PDF全文
Removal of introns from pre-messenger RNAs in eukaryotes is carried out by the spliceosome, an assembly of a large number of proteins and five small nuclear RNAs (snRNAs). We showed previously that an in vitro transcribed and assembled base-paired complex of U2 and U6 snRNA segments catalyzes a reaction that resembles the first step of splicing. Upon incubation with a short RNA oligonucleotide containing the consensus sequence of the pre-mRNA branch site, the U2/U6 complex catalyzed a reaction between the 2' OH of a bulged adenosine and a phosphate in the catalytically important AGC triad of U6, leading to the formation of an X-shaped product, RNA X, apparently linked by an unusual phosphotriester bond. Here we characterize this splicing-related reaction further, showing that RNA X formation is an equilibrium reaction, and that the low yield of the reaction likely reflects an unfavorable equilibrium coefficient. Consistent with a phosphotriester linkage, RNA X is highly alkali-sensitive, but only mildly acid-sensitive. We also show that mutations in the AGC sequence of U6 can have significant effects on RNA X formation, further extending the similarities between splicing and RNA X formation. We also demonstrate that pseudouridylation of U2 enhances RNA X formation, and that U6 snRNA purified from nuclear extracts is capable of forming RNA X. Our data suggest that the ability to form RNA X might be an intrinsic property of spliceosomal snRNAs.  相似文献   

5.
Splicing of mRNA precursors occurs in a massive structure known as the spliceosome and requires the function of several small nuclear RNAs (snRNAs). A number of studies have suggested potentially important roles for two snRNAs, U2 and U6, in splicing catalysis. These two RNAs interact extensively with each other, as well as with the pre-mRNA, and possible similarities with catalytic RNAs have been noted. An important feature of the U2-U6 complex is an intramolecular helix in U6, which forms in conjunction with activation of the spliceosome. Here we describe a detailed genetic analysis of residues that make up this helix in human U6 snRNA, using an in vivo assay in which splicing of a test pre-mRNA is dependent on exogenous U6 snRNA. Our results show that many, but not all, positions tested are sensitive to mutation. Unexpectedly, base pairing is fully compatible with function at all positions, and at many is both necessary and sufficient. For example, conversion of two noncanonical A-C pairs to G-C pairs did not affect splicing, nor did conversion of an A-G to C-G. Extension of the helix by a base pair was also tolerated, provided that base pairing was maintained. Most notable was the behavior of a bulged U (U74), which has been suggested previously to be of particular importance. Although U74 was sensitive to substitution or deletion, incorporation into the helix by insertion of an A across from it was without effect, even in the context of a second helix-stabilizing mutation. We discuss these results in terms of possible mechanisms by which U6 snRNA might function in splicing catalysis.  相似文献   

6.
Lsm proteins promote regeneration of pre-mRNA splicing activity   总被引:7,自引:0,他引:7  
Lsm proteins are ubiquitous, multifunctional proteins that affect the processing of most RNAs in eukaryotic cells, but their function is unknown. A complex of seven Lsm proteins, Lsm2-8, associates with the U6 small nuclear RNA (snRNA) that is a component of spliceosome complexes in which pre-mRNA splicing occurs. Spliceosomes contain five snRNAs, U1, U2, U4, U5, and U6, that are packaged as ribonucleoprotein particles (snRNPs). U4 and U6 snRNAs contain extensive sequence complementarity and interact to form U4/U6 di-snRNPs. U4/U6 di-snRNPs associate with U5 snRNPs to form U4/U6.U5 tri-snRNPs prior to spliceosome assembly. Within spliceosomes, disruption of base-paired U4/U6 heterodimer allows U6 snRNA to form part of the catalytic center. Following completion of the splicing reaction, snRNPs must be recycled for subsequent rounds of splicing, although little is known about this process. Here we present evidence that regeneration of splicing activity in vitro is dependent on Lsm proteins. RNP reconstitution experiments with exogenous U6 RNA show that Lsm proteins promote the formation of U6-containing complexes and suggest that Lsm proteins have a chaperone-like function, supporting the assembly or remodeling of RNP complexes involved in splicing. Such a function could explain the involvement of Lsm proteins in a wide variety of RNA processing pathways.  相似文献   

7.
We have previously shown that a base-paired complex formed by two of the spliceosomal RNA components, U6 and U2 small nuclear RNAs (snRNAs), can catalyze a two-step splicing reaction that depended on an evolutionarily invariant region in U6, the ACAGAGA box. Here we further analyze this RNA-catalyzed reaction and show that while the 5′ and 3′ splice site substrates are juxtaposed and positioned near the ACAGAGA sequence in U6, the role of the snRNAs in the reaction is beyond mere juxtaposition of the substrates and likely involves the formation of a sophisticated active site. Interestingly, the snRNA-catalyzed reaction is metal dependent, as is the case with other known splicing RNA enzymes, and terbium(III) cleavage reactions indicate metal binding by the U6/U2 complex within the evolutionarily conserved regions of U6. The above results, combined with the structural similarities between U6 and catalytically critical domains in group II self-splicing introns, suggest that the base-paired complex of U6 and U2 snRNAs is a vestigial ribozyme and a likely descendant of a group II-like self-splicing intron.  相似文献   

8.
P G Siliciano  D A Brow  H Roiha  C Guthrie 《Cell》1987,50(4):585-592
Three yeast snRNAs (snR20, snR7, and snR14) have been implicated in pre-mRNA splicing. snR20 and snR7 contain domains of homology to U2 and U5, respectively, and each is required for viability. These RNAs are found associated with the spliceosome, as is snR14. We show here that snR14 is also an essential gene product. Sequence analysis reveals that, like snR7 and snR20, snR14 contains a consensus binding site for the Sm antigen, a feature common to all mammalian snRNAs involved in splicing. Moreover, snR14 exhibits several blocks of sequence and structural homology to U4, which in metazoans is found in association with U6. Native gel electrophoresis demonstrates that snR14 is in fact base-paired with another yeast snRNA, designated snR6, which has primary sequence homology to U6. We conclude that snR14 is the yeast analog of U4.  相似文献   

9.
10.
The spliceosome is a large, dynamic ribonuclear protein complex, required for the removal of intron sequences from newly synthesized eukaryotic RNAs. The spliceosome contains five essential small nuclear RNAs (snRNAs): U1, U2, U4, U5, and U6. Phylogenetic comparisons of snRNAs from protists to mammals have long demonstrated remarkable conservation in both primary sequence and secondary structure. In contrast, the snRNAs of the hemiascomycetous yeast Saccharomyces cerevisiae have highly unusual features that set them apart from the snRNAs of other eukaryotes. With an emphasis on the pathogenic yeast Candida albicans, we have now identified and compared snRNAs from newly sequenced yeast genomes, providing a perspective on spliceosome evolution within the hemiascomycetes. In addition to tracing the origins of previously identified snRNA variations present in Saccharomyces cerevisiae, we have found numerous unexpected changes occurring throughout the hemiascomycetous lineages. Our observations reveal interesting examples of RNA and protein coevolution, giving rise to altered interaction domains, losses of deeply conserved snRNA-binding proteins, and unique snRNA sequence changes within the catalytic center of the spliceosome. These same yeast lineages have experienced exceptionally high rates of intron loss, such that modern hemiascomycetous genomes contain introns in only approximately 5% of their genes. Also, the splice site sequences of those introns that remain adhere to an unusually strict consensus. Some of the snRNA variations we observe may thus reflect the altered intron landscape with which the hemiascomycetous spliceosome must contend.  相似文献   

11.
Splicing of introns from mRNA precursors is a two-step reaction performed by the spliceosome, an immense cellular machine consisting of over 200 different proteins and five small RNAs (snRNAs). We previously demonstrated that fragments of two of these RNAs, U6 and U2, can catalyze by themselves a splicing-related reaction, involving one of the two substrates of the first step of splicing, the branch site substrate. Here we show that these same RNAs can catalyze a reaction between RNA sequences that resemble the 5' splice site and the branch site, the two reactants of the first step of splicing. The reaction is dependent on the sequence of the 5' splice site consensus sequence and the catalytically essential domains of U6, and thus it resembles the authentic splicing reaction. Our results demonstrate the ability of protein-free snRNAs to recognize the sequences involved in the first splicing step and to perform splicing-related catalysis between these two pre-mRNA-like substrates.  相似文献   

12.
13.
S M Berget  B L Robberson 《Cell》1986,46(5):691-696
The requirement for individual U RNAs in splicing and polyadenylation was investigated using oligonucleotide-directed cleavage of snRNAs in in vitro processing extracts. Cleavage of U1, U2, or U4 RNA inhibited splicing but not polyadenylation of short precursor RNAs. Thus each snRNA and the snRNP in which it is assembled participates in the splicing reaction. Splicing activity was recovered when extracts containing cleaved U RNAs were mixed in pairwise combinations, indicating that U1, U2, and U4/U6 snRNPs independently interact with the assembling spliceosome. The involvement of multiple snRNPs in the splicing of simple precursor RNAs suggests that the spliceosome is a large complex assembly consisting of multiple snRNPs whose activity is dependent on the structural integrity of the individual U RNAs.  相似文献   

14.
Current models of the core of the spliceosome include a network of RNA-RNA interactions involving the pre-mRNA and the U2, U5, and U6 snRNAs. The essential spliceosomal protein Prp8 interacts with U5 and U6 snRNAs and with specific pre-mRNA sequences that participate in catalysis. This close association with crucial RNA sequences, together with extensive genetic evidence, suggests that Prp8 could directly affect the function of the catalytic core, perhaps acting as a splicing cofactor. However, the sequence of Prp8 is almost entirely novel, and it offers few clues to the molecular basis of Prp8-RNA interactions. We have used an innovative transposon-based strategy to establish that catalytic core RNAs make multiple contacts in the central region of Prp8, underscoring the intimate relationship between this protein and the catalytic center of the spliceosome. Our analysis of RNA interactions identifies a discrete, highly conserved region of Prp8 as a prime candidate for the role of cofactor for the spliceosome's RNA core.  相似文献   

15.
Most eukaryotic mRNAs depend upon precise removal of introns by the spliceosome, a complex of RNAs and proteins. Splicing of pre-mRNA is known to take place in Dictyostelium discoideum, and we previously isolated the U2 spliceosomal RNA experimentally. In this study, we identified the remaining major spliceosomal RNAs in Dictyostelium by a bioinformatical approach. Expression was verified from 17 small nuclear RNA (snRNA) genes. All these genes are preceded by a putative noncoding RNA gene promoter. Immunoprecipitation showed that snRNAs U1, U2, U4, and U5, but not U6, carry the conserved trimethylated 5' cap structure. A number of divergent U2 species are expressed in Dictyostelium. These RNAs carry the U2 RNA hallmark sequence and structure motifs but have an additional predicted stem-loop structure at the 5' end. Surprisingly, and in contrast to the other spliceosomal RNAs in this study, the new U2 variants were enriched in the cytoplasm and were developmentally regulated. Furthermore, all of the snRNAs could also be detected as polyadenylated species, and polyadenylated U1 RNA was demonstrated to be located in the cytoplasm.  相似文献   

16.
17.
During each spliceosome cycle, the U6 snRNA undergoes extensive structural rearrangements, alternating between singular, U4-U6 and U6-U2 base-paired forms. In Saccharomyces cerevisiae, Prp24 functions as an snRNP recycling factor, reannealing U4 and U6 snRNAs. By database searching, we have identified a Prp24-related human protein previously described as p110(nrb) or SART3. p110 contains in its C-terminal region two RNA recognition motifs (RRMs). The N-terminal two-thirds of p110, for which there is no counterpart in the S.cerevisiae Prp24, carries seven tetratricopeptide repeat (TPR) domains. p110 homologs sharing the same domain structure also exist in several other eukaryotes. p110 is associated with the mammalian U6 and U4/U6 snRNPs, but not with U4/U5/U6 tri-snRNPs nor with spliceosomes. Recom binant p110 binds in vitro specifically to human U6 snRNA, requiring an internal U6 region. Using an in vitro recycling assay, we demonstrate that p110 functions in the reassembly of the U4/U6 snRNP. In summary, p110 represents the human ortholog of Prp24, and associates only transiently with U6 and U4/U6 snRNPs during the recycling phase of the spliceosome cycle.  相似文献   

18.
A UV-crosslinkable interaction in human U6 snRNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
U6 snRNA is the most conserved of all the snRNAs involved in pre-mRNA splicing, and likely plays an important role in splicing catalysis. Using a U6 snRNA fragment encompassing residues 25-99, we have identified a strong, UV-sensitive tertiary intramolecular interaction. A 5' deletion that removed sequences up to nt 37 only slightly reduced crosslinking, but further deletion of 11 bases, eliminating the nearly invariant ACAGAGA sequence, essentially abolished crosslinking, as did deletion of sequences 3' of 82A. The crosslinked residues were mapped to 44G in the ACAGAGA sequence and to 81C, the nucleotide at the base of the U6 intramolecular helix, opposite the G of the invariant AGC trinucleotide. This interaction is striking in that it has the potential to juxtapose invariant regions of U6 believed to play critical roles in splicing catalysis.  相似文献   

19.
Nuclear mRNA precursors are spliced by a large macromolecular complex called the spliceosome which contains, in most eucaryotes, five small nuclear RNAs (snRNAs) each in the form of a small ribonucleoprotein particle (the U1, U2, U5, and U4/U6 snRNPs). Although secondary structures have been derived for all five spliceosomal snRNAs based on phylogenetic, biochemical, and genetic data, little tertiary structure information is available. Here we use the general cross-linking reagent nitrogen mustard [bis-(2-chloroethyl)methylamine] to detect tertiary interactions within U2 snRNA. After the cross-linking of deproteinized HeLa nuclear extract, two intramolecularly cross-linked U2 species with anomalous electrophoretic mobility can be detected (X-U2#1 and X-U2#2). The 3' and 5' boundaries of each cross-link were determined by rapid enzymatic RNA sequencing of end-labeled RNA. X-U2#1 is cross-linked between the region U41-U55 and G105 or G106, X-U2#2 between U53 and G97 or G98. We then tested the ability of the two cross-linked species to bind snRNP proteins in vitro (in nuclear extract or S100) and in vivo (in Xenopus oocytes). X-U2#2 reconstituted efficiently both in vitro and in vivo but X-U2#1 did not, as judged by immunoprecipitation with antibodies specific for Sm- and U2-specific proteins. Since the cross-link in X-U2#2 involves the Sm binding site but does not block snRNP assembly, our data strongly suggest that the Sm binding site lies on the surface of the native snRNP.  相似文献   

20.
J E Mermoud  P T Cohen    A I Lamond 《The EMBO journal》1994,13(23):5679-5688
Splicing of mRNA precursors (pre-mRNA) is preceded by assembly of the pre-mRNA with small nuclear ribonucleoprotein particles (snRNPs) and protein factors to form a splicesome. Here we show that stimulating Ser/Thr-specific protein dephosphorylation selectively inhibits an early step during mammalian spliceosome assembly. Treatment of HeLa nuclear splicing extracts with human protein phosphatase 1 (PP1) expressed in Escherichia coli, or PP1 purified from rabbit skeletal muscle, prevents pre-spliceosome E complex (early complex) formation and stable binding of U2 and U4/U6.U5 snRNPs to the pre-mRNA. PP1 does not inhibit splicing catalysis if added after spliceosome assembly has taken place. Addition of purified SR protein splicing factors restores spliceosome formation and splicing to PP1-inhibited extracts, consistent with SR proteins being targets regulated by phosphorylation. These data extend earlier observations showing that splicing catalysis, but not spliceosome assembly, is blocked by inhibiting protein phosphatases. It therefore appears that pre-mRNA splicing, in common with other biological processes, can be regulated both positively and negatively by reversible protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号