首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Gough, Michael (Brown University, Providence, R.I.), and Seymour Lederberg. Methylated bases in the host-modified deoxyribonucleic acid of Escherichia coli and bacteriophage lambda. J. Bacteriol. 91:1460-1468. 1966.-The deoxyribonucleic acid (DNA) from strains of Escherichia coli and phage lambda was examined to determine whether the types or amounts of methionine-derived methylated bases present correlated with the host-specific modification of that DNA. The DNA of strain C600 (which has K-12 modification specificity) and of a modificationless mutant of C600 are similar in their content of 5-methylcytosine and 6-methylaminopurine. Strains Bc251 and its P1-lysogen differ in P1-controlled specificity, but they have the same content of 6-methylaminopurine, and both lack 5-methylcytosine in their DNA. Phage lambda contains the same methylated bases as its host of origin, but in reduced amounts and in different proportions. Although minor amounts of these methylated bases may have importance as a result of their location, the presence of the majority of these methylated bases is irrelevant to the specificity of host modification of DNA.  相似文献   

2.
The bZIP homodimers CEBPB and CREB1 bind DNA containing methylated cytosines differently. CREB1 binds stronger to the C/EBP half-site GCAA when the cytosine is methylated. For CEBPB, methylation of the same cytosine does not affect DNA binding. The X-ray structure of CREB1 binding the half site GTCA identifies an alanine in the DNA binding region interacting with the methyl group of T, structurally analogous to the methyl group of methylated C. This alanine is replaced with a valine in CEBPB. To explore the contribution of this amino acid to binding with methylated cytosine of the GCAA half-site, we made the reciprocal mutants CEBPB(V285A) and CREB1(A297V) and used protein binding microarrays (PBM) to examine binding to four types of double-stranded DNA (dsDNA): 1) DNA with cytosine in both strands (DNA(C|C)), 2) DNA with 5-methylcytosine (M) in one strand and cytosine in the second strand (DNA(M|C)), 3) DNA with 5-hydroxymethylcytosine (H) in one strand and cytosine in the second strand (DNA(H|C)), and 4) DNA with both cytosines in all CG dinucleotides containing 5-methylcytosine (DNA(5mCG)). When binding to DNA(C|C), CEBPB (V285A) preferentially binds the CRE consensus motif (TGACGTCA), similar to CREB1. The reciprocal mutant, CREB1(A297V) binds DNA with some similarity to CEBPB, with strongest binding to the methylated PAR site 8-mer TTACGTAA. These data demonstrate that V285 residue inhibits CEBPB binding to methylated cytosine of the GCAA half-site.  相似文献   

3.
Information has been lacking as to whether mitochondrial DNA of animal cells is methylated. The methylation patterns of mitochondrial and nuclear DNAs of several mammalian cell lines have therefore been compared by four methods: (1) in vivo transfer of the methyl group from [methyl-3H]methionine; (2) in vivo incorporation of [32P]orthophosphate and a combination of (1) and (2); (3) in vivo incorporation of [3H]deoxycytidine; (4) in vitro methylation of DNAs with 3H-labeled S-adenosylmethionine as methyl donor and DNA methylase preparations from L cell nuclei. The cell lines were mouse L cells, BHK21C13, C13B4 (baby hamster kidney cells transformed by the Bryan strain of Rouse sarcoma virus), and PyY (BHK cells transformed by polyoma virus). DNA bases were separated chromatographically, using 5-methylcytosine, 6-methylaminopurine and, in some cases, 7-methylguanine as markers.Mitochondrial DNA was found to be significantly less methylated than nuclear DNA with respect to 5-methylcytosine in all cell types studied and by all methods used. The relative advantages and disadvantages of each method have been discussed. The level of 5-methylcytosine in mitochondrial DNA as compared with that in nuclear DNA was estimated as one-fourth to one-fourteenth in various cell lines. The estimated 5-methylcytosine content per circular mitochondrial DNA molecule (mol. wt 10 × 106) was about 12 methylcytosine residues for L cells and 24, 30 and 36 methylcytosine residues for BHK, B4 and PyY cells, respectively. Relative to cytosine residues, the estimate was one 5-methylcytosine per 500 cytosine residues of mitochondrial DNA and one 5-methylcytosine per 36 cytosine residues of nuclear DNA from L-cells. The values for methylcytosine of mitochondrial DNA are presumed to be maximal. PyY cells as compared with other cells had the highest methylcytosine content of both mitochondrial and nuclear DNA as estimated by method (3). No methylation of nuclear DNA was observed in confluent L cells.Evidence for the presence of DNA methylase activity associated with mitochondrial fractions was obtained. This activity could be distinguished from other cellular DNA methylase activity by differential response to mercaptoethanol. Radioactivity from 3H-labeled S-adenosylmethionine was found only in 5-methyl-cytosine of DNA.  相似文献   

4.
A sensitive assay for 5-methylcytosine in DNA has been developed based on stable isotope dilution gas chromatography-mass spectrometry with selected ion monitoring. 5-([2H3]-Methyl)cytosine and [methyl-2H3]thymine have been synthesized as internal standards for analysis of DNA following acid digestion, conversion of pyrimidines to volatile t-butyldimethylsilyl derivatives, and separation in 3 min by gas chromatography. Submicrogram amounts of DNA have been analyzed for 5-methylcytosine content in the range 0.02–1.5 mol%. The estimated limit of quantitative measurement is 0.3 pmol of methylated base in a DNA hydrolysate. The method is compared with other techniques for quantitative measurement of methylated bases in DNA, and 5-methylcytosine levels and precision of analysis for calf thymus, pBR322, and ΦX-174 DNAs are reported and compared with literature values. The method can readily be adapted to the accurate high-sensitivity analysis of other methylated bases in DNA.  相似文献   

5.
DNA of mouse teratocarcinoma cells has been analysed as to content of methylated bases by a sensitive method based on two consecutive steps of two-dimensional thin-layer chromatography of radioactively labelled DNA bases. In pluripotent embryonal carcinoma cells (EC), and EC cells cultured under differentiating conditions, as well as teratoma-derived myoblasts and fibroblasts, 5-methylcytosine (5-MC) was the only methylated base found. DNA of the differentiated cell lines (fibroblasts and myoblasts) contained 3.3% and 3.6% 5-MC respectively, while that of embryonal carcinoma cells had 3.8%–5.2%, depending on the cell line. During in vitro differentiation the PCC3/A/1 cell line showed some decrease in percentage of 5-MC (4.2% for EC cells and 3.8% for 30-day cultures).  相似文献   

6.
The kinetics of DNA methylation in cultures of a mouse adrenal cell line   总被引:8,自引:0,他引:8  
Direct measurements of the methylation of newly-synthesized DNA were made in cultures of a clonal mouse adrenal cortex cell line, Y129OS3, by (1) following the incorporation of radioactivity from methionine-(methyl)-C14 into a segment of DNA which had been density-labeled with bromouracil and (2) labeling DNA cytosine with C14-deoxycytidine and then following the appearance of radioactivity in DNA 5-methylcytosine. The results establish that during exponential growth the DNA of this cell line is methylated entirely within a few minutes of its synthesis. Using the second technique described above accurate, sensitive measurements of DNA methylation levels can be made by comparing radioactivity in 5-methylcytosine to radioactivity in cytosine plus 5-methylcytosine. In this cell line 5-methylcytosine accounts for 4.3 ± 0.2% of the DNA cytosine. Some apparent contradictions between these results and those of other workers are discussed.  相似文献   

7.
Repetitious DNA in some Anemone Species   总被引:2,自引:0,他引:2  
The DNA from several Anemone species, which contain different amounts of heterochromatin as revealed by Giemsa staining, was analysed by ultra-centrifugation and renaturation. No satellite band was observed in any of the samples centrifuged in cesium chloride gradients. Renaturation studies showed the presence of repetitive sequences. The proportion of repetitive DNA per genome varied from 53% to 67% and did not correlate with either the DNA content per cell or the relative amount of heterochromatin.  相似文献   

8.
Methylation Pattern of Lambda Deoxyribonucleic Acid   总被引:1,自引:0,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from phage lambda grown on Escherichia coli K-12 strain W4032 had 113 +/- 10 5-methylcytosine residues and 215 +/- 20 6-methyl adenine residues per genome, as determined by three independent methods. These methylated nucleotides were distributed equally among the two strands of lambda DNA. Shearing of double-stranded DNA to half-length fragments revealed a slight deficiency of 5-methyl cytosine in the 55% guanine plus cytosine half. Shearing the DNA to fragments of smaller length showed that the distribution of methylated nucleotides along the double helix was uniform with the exception of an undermethylated fragment arising from the center of the lambda DNA molecule. The implication of these results for the function of methylated nucleotides in the lambda DNA molecule is discussed.  相似文献   

9.
The distribution of 5-methylcytosine among H1-rich and -poor bovine thymus chromatin regions was determined. 5-Methylcytosine was enriched in H1-rich chromatin regions, with linker and nucleosomal DNA containing similar amounts of this modified base. Satellite I DNA sequences, which constitute 5-7% of the genome and are highly methylated, were preferentially localized among H1-rich chromatin regions, in accordance with the distribution of 5-methylcytosine. In contrast to the satellite I DNA sequences, prothrombin (a single copy DNA sequence) was localized among both H1-rich and -poor chromatin regions. The results of this study are consistent with the hypothesis that DNA methylation has a role in modulating the structure of chromatin.  相似文献   

10.
Characterization of DNA methylation in the rat   总被引:6,自引:0,他引:6  
In the rat, differentiation and cell proliferation both affect DNA methylation. We studied 5-methylcytosine at the inner cytosine of the sequence C-C-G-G, a common methylation site, using endonuclease MspI (which cleaves C-C-G-G- and C-mC-G-G), and its isoschizomer HpaII (which cleaves only C-C-G-G). DNA from all tissues and cell lines studied was methylated at C-C-G-G, at levels ranging from 45 to 80%, but the methylation sites were not distributed uniformly. Our analysis suggests a model in which cells contain variable amounts of three DNA methylation states, averaging 30-40, 70-80 and 95-100% methylation, respectively. One biological parameter that alters methylation is the proliferative state of the cell. We observed that NRK, a non-transformed cell line, increased its DNA methylation from 45 to 67% when monolayer cultures became confluent and non-dividing. We also observed that a class of repetitive DNA was completely methylated in DNA from all sources except a transformed cell line.  相似文献   

11.
12.
Genomic DNA of calf thymus contains 1.5 times as much 5-methylcytosine as similar sperm DNA, but the major EcoRI repeat fragment from satellite I of thymus contains ten times as much 5-methylcytosine as the corresponding fragment from sperm DNA. Restriction enzyme analyses of the total DNA and the satellite I fragment show that three HpaII sites in the fragment are completely unmethylated in sperm but fully methylated in thymus DNA. Under-methylation of many sites in the satellite DNAs can probably account for the lower level of methylation of sperm DNA rather than hemimethylation as previously suggested. These results are also discussed in relation to maintenance and de novo (initiation-type) methylases.  相似文献   

13.
Analysis of the total base composition of DNA from seven different normal human tissues and eight different types of homogeneous human cell populations revealed considerable tissue-specific and cell-specific differences in the extent of methylation of cytosine residues. The two most highly methylated DNAs were from thymus and brain with 1.00 and 0.98 mole percent 5-methylcytosine (m5C), respectively. The two least methylated DNAs from in vivo sources were placental DNA and sperm DNA, which had 0.76 and 0.84 mole percent m5C, respectively. The differences between these two groups of samples were significant with p less than 0.01. The m5C content of DNA from six human cell lines or strains ranged from 0.57 to 0.85 mole percent. The major and minor base composition of DNA fractionated by reassociation kinetics was also determined. The distribution of m5C among these fractions showed little or no variation with tissue or cell type with the possible exception of sperm DNA. In each case, nonrepetitive DNA sequences were hypomethylated compared to unfractionated DNA.  相似文献   

14.
15.
The amount of simian virus 40 (SV40) DNA present in various SV40-transformed mouse cell lines and “revertants” isolated from them was determined. The number of viral DNA copies in the different cell lines ranged from 1.35 to 8.75 copies per diploid quantity of mouse cell DNA and from 2.2 to 14 copies per cell. The revertants had the same number of viral DNA copies per diploid quantity of mouse cell DNA as their parental cell lines. (However, they showed an increased number of viral DNA copies per cell due to their increased amount of DNA.) By using separated strands of SV40 DNA, the extent of each DNA strand transcribed into stable RNA species was determined for the transformed and “revertant” cell lines. From 30 to 80% of the “early” strand and from 0 to 20% of the “late” strand was present as stable RNA species in the cell lines tested. There was no alteration in the pattern of the stable viral RNA species present in three concanavalin A-selected revertants, whereas in a fluorodeoxyuridine-selected revertant there appeared to be less viral-specific RNA present in the cells.  相似文献   

16.
In the rat, differentiation and cell proliferation both affect DNA methylation. We studied 5-methylcytosine at the inner cytosine of the sequence C-C-G-G, a common methylation site, using endonuclease MspI (which cleaves C-C-G-G- and C-mC-G-G), and its isoschizomer HpaII (which cleaves only C-C-G-G). DNA from all tissues and cell lines studied was methylated at C-C-G-G, at levels ranging from 45 to 80%, but the methylation sites were not distributed uniformly. Our analysis suggests a model in which cells contain variable amounts of three DNA methylation states, averaging 30–40, 70–80 and 95–100% methylation, respectively. One biological parameter that alters methylation is the prolferative state of the cell. We observed that NRK, a non-transformed cell line, increased its DNA methylation from 45 to 67% when monolayer cultures became confluent and non-dividing. We also observed that a class of repetitive DNA was completely methylated in DNA from all sources except a transformed cell line.  相似文献   

17.
18.
The levels of the in vitro methylation of total and palindromic DNAs in nuclei isolated from normal and virus-transformed cells are compared. The methylation rate of total DNA in normal rat kidney cells is much higher than that detected in normal mouse fibroblasts. However, for both cell species, while the maximal rate of DNA methylation is observed in the mid-logarithmic phase of the cell culture growth, palindromes are always found to be more heavily methylated than total DNA. The 5-methylcytosine content of DNA, especially of palindromes, is higher in virus-transformed cells than in untransformed cells.  相似文献   

19.
20.
A method to separate the four major bases (cytosine, guanine, thymine and adenine) and the two minor modified bases (5-methylcytosine and 6N-methyladenine) in DNA has been developed. For optimal separation, several different buffer systems are available for isocratic elution. The 12 5-methylcytosine (5-mC) residues in the plasmid pBR322 can be determined with a deviation of less than 3% of the expected value and have been used for internal standardization. Formic acid hydrolysis of bases and probably of DNA does not lead to the deamination of cytosine or 5-mC and thus can be used routinely for DNA hydrolysis. Adenovirus or baculovirus DNA does not contain detectable amounts of 5-mC. The distribution of 5-mC in hamster cell DNA appears to be nonrandom in that different 5'-CpG-3'-containing restriction sites are methylated to different extents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号