首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Techniques for determining large transbilayer pH gradients (delta pH) and membrane potentials (delta psi) induced in response to delta pH in large unilamellar vesicle liposomal systems by measuring the transbilayer redistribution of radiolabeled compounds have been examined. For liposomes with acidic interiors, it is shown that protocols using radiolabeled methylamine in conjunction with gel filtration procedures to remove untrapped methylamine provide accurate measures of delta pH in most situations. Exceptions include gel state lipid systems, where transbilayer equilibration processes are slow, and situations where the interior buffering capacity is limited. These problems can be circumvented by incubation at elevated temperatures and by using probes with higher specific activities, respectively. Determination of delta pH in vesicles with a basic interior using weak acid probes such as radiolabeled acetate in conjunction with gel filtration was found to be less reliable, and an alternative equilibrium centrifugation protocol is described. In the case of determinations of the membrane potentials induced in response to these pH gradients, probes such as tetraphenylphosphonium and thiocyanate provide relatively accurate measures of the delta psi induced. It is shown that the maximum transmembrane pH gradient that can be stably maintained by an egg phosphatidylcholine-cholesterol 100-nm-diam large unilamellar vesicle is approximately 3.7 units, corresponding to an induced delta psi of 220 mV or transbilayer electrical field of 5 x 10(5) V/cm.  相似文献   

2.
D S Cafiso  W L Hubbell 《Biochemistry》1978,17(18):3871-3877
Spin-labeled secondary amines have been used to measure transmembrane proton gradients in sonicated liposomes. The electron paramagnetic resonance spectra of these probes show changes in the ratio of membrane associated to free aqueous probe as a function of transmembrane pH gradient. As the pH gradient is increased, inside acidic, the amount of membrane associated probe increases. The results are accounted for by a simple thermodynamic theory.  相似文献   

3.
The electrical potential (delta psi) and proton gradient (alpha pH) across the membranes of isolated bovine chromaffin granules and ghosts were simultaneously and quantitatively measured by using the membrane- permeable dyes 3,3'dipropyl-2,2'thiadicarbocyanine (diS-C3-(5)) to measure delta psi and 9-aminoacridine or atebrin to measure delta pH. Increases or decreases in the delta psi across the granular membrane could be monitored by fluorescence or transmittance changes of diS-C3- (5). Calibration of the delta psi was achieved by utilization of the endogenous K+ and H+ gradients, and valinomycin or carbonyl cyanide-p- trifluoromethoxyphenylhydrazone (FCCP), respectively, with the optical response of diS-C3-(5) varying linearly with the Nernst potential for H+ and K+ over the range -60 to +90 mV. The addition of chromaffin granules to a medium including 9-aminoacridine or atebrin resulted in a rapid quenching of the dye fluorescence, which could be reversed by agents known to cause collapse of pH gradients. From the magnitude of the quenching and the intragranular water space, it was possible to calculate the magnitude of the alpha pH across the chromaffin granule membrane. The time-course of the potential-dependent transmittance response of diS-C3-(5) and the delta pH-dependent fluorescence of the acridine dyes were studied simultaneously and quantitatively by using intact and ghost granules under a wide variety of experimental conditions. These results suggest that membrane-permeable dyes provide an accurate method for the kinetic measurement of delta pH and delta psi in an amine containing subcellular organelle.  相似文献   

4.
Preliminary studies have shown that asymmetric transbilayer distributions of phosphatidic acid (PA) can be induced by transmembrane pH gradients (delta pH) in large unilamellar vesicles [Hope et al. (1989) Biochemistry 28, 4181-4187]. Here the mechanism of PA transport is examined employing TNS as a fluorescent probe of lipid asymmetry. It is shown that the kinetics of PA transport are consistent with the transport of the uncharged (protonated) form. Transport of the neutral form can be rapid, exhibiting half-times for transbilayer transport of approximately 25 s at 45 degrees C. It is also shown that PA transport is associated with a large activation energy (28 kcal/mol) similar to that observed for phosphatidylglycerol. The maximum induced transbilayer asymmetry of PA corresponded to approximately 95% on the inner monolayer for vesicles containing 5 mol % PA.  相似文献   

5.
Although cell lysis by the hemolytic peptide, melittin, has been extensively studied, the role of specific lipids of the erythrocyte membrane on melittin-induced hemolysis remains unexplored. In this report, we have explored the modulatory role of cholesterol on the hemolytic activity of melittin by specifically depleting cholesterol from rat erythrocytes using methyl-beta-cyclodextrin (MbetaCD). Our results show that the hemolytic activity of melittin is increased by approximately 3-fold upon depletion of erythrocyte membrane cholesterol by approximately 55% without any appreciable loss of phospholipids. This result constitutes the first report demonstrating that the presence of cholesterol inhibits the lytic activity of melittin in its natural target membrane, i.e., the erythrocyte membrane. These results are relevant in understanding the role of cholesterol in the mechanism of action of melittin in the erythrocyte membrane.  相似文献   

6.
The uptake of derivatives of lysine and a pentapeptide (ala-met-leu-trp-ala) into large unilamellar vesicle (LUV) systems in response to transmembrane pH gradients has been examined. In these derivatives, the C-terminal carboxyl functions have been converted to methyl esters or amides. It is shown that the presence of a pH gradient (interior acidic) results in the rapid and efficient accumulation of these weak base amino acid and peptide derivatives into LUVs in a manner consistent with permeation of the neutral (deprotonated) form. It is suggested that this property may have general implications for mechanisms of transbilayer translocation of peptides, such as signal sequences, which exhibit weak base characteristics.  相似文献   

7.
The influence of membrane pH gradients on the transbilayer distribution of some common phospholipids has been investigated. We demonstrate that the transbilayer equilibrium of the acidic phospholipids egg phosphatidylglycerol (EPG) and egg phosphatidic acid (EPA) can be manipulated by membrane proton gradients, whereas phosphatidylethanolamine, a zwitterionic phospholipid, remains equally distributed between the inner and outer monolayers of large unilamellar vesicles (LUVs). Asymmetry of EPG is examined in detail and demonstrated by employing three independent techniques: ion-exchange chromatography, 13C NMR, and periodic acid oxidation of the (exterior) EPG headgroup. In the absence of a transmembrane pH gradient (delta pH) EPG is equally distributed between the outer and inner monolayers of LUVs. When vesicles composed of either egg phosphatidylcholine (EPC) or DOPC together with 5 mol % EPG are prepared with a transmembrane delta pH (inside basic, outside acidic), EPG equilibrates across the bilayer until 80-90% of the EPG is located in the inner monolayer. Reversing the pH gradient (inside acidic, outside basic) results in the opposite asymmetry. The rate at which EPG equilibrates across the membrane is temperature dependent. These observations are consistent with a mechanism in which the protonated (neutral) species of EPG is able to traverse the bilayer. Under these circumstances EPG would be expected to equilibrate across the bilayer in a manner that reflects the transmembrane proton gradient. A similar mechanism has been demonstrated to apply to simple lipids that exhibit weak acid or base characteristics [Hope, M. J., & Cullis, P. R. (1987) J. Biol. Chem 262, 4360-4366]  相似文献   

8.
We have investigated the influence of transmembrane pH gradients across large unilamellar vesicle membranes on the transbilayer distributions of simple lipids with weak base and weak acid characteristics. Trinitrobenzenesulfonic acid labeling results consistent with a rapid and complete migration of stearylamine and sphingosine to the inner monolayer of the large unilamellar vesicles are observed when the large unilamellar vesicles' interior is acidic. Alternatively, when the vesicle interior is basic, oleic and stearic acid cannot be removed by external bovine serum albumin, indicating a localization in the inner monolayer. Moreover, effects corresponding to the decrease in external surface charge predicted upon the migration of stearylamine or stearic acid to the inner monolayer are readily detected employing ion exchange chromatography. These results are consistent with transbilayer distributions of these agents dictated by a Henderson-Hasselbach equilibrium. The possible implications for metabolic regulation by pH gradients, as well as factors giving rise to phospholipid transbilayer asymmetry, are discussed.  相似文献   

9.
10.
A new high-sensitivity method has been described for measuring transmembrane pH gradients in vesicular systems using 19F NMR. The 19F resonance of trifluoroethylamine has been shown to have a large pH-dependent chemical shift and the position of the resonance was measured with high precision and sensitivity. In suspensions of human erythrocytes, trifluoroethylamine distributed itself across the membrane and separate 19F resonances were obtained from the trifluoroethylamine inside and outside of the cells. The pH in each compartment was calculated from the resonance positions.  相似文献   

11.
Previous work [Hope et al. (1989) Biochemistry 28, 4181-4187] has shown that asymmetric transmembrane distributions of phosphatidylglycerol (PG) in PG-phosphatidylcholine (PC) large unilamellar vesicles can be induced in response to transbilayer pH gradients (delta pH). Here the mechanism of PG transport has been investigated. It is shown that PG movement in response to delta pH is consistent with permeation of the uncharged (protonated) form and that the half-time for transbilayer movement of the uncharged form can be on the order of seconds at 45 degrees C. This can result in rapid pH-dependent transmembrane redistributions of PG. The rate constant for transbilayer movement exhibits a large activation energy (31 kcal/mol) consistent with transport of neutral dehydrated PG where dehydration of the (protonated) phosphate presents the largest barrier to transmembrane diffusion. It is shown that acyl chain saturation, chain length, and the presence of cholesterol modulate the rate constants for PG transport in a manner similar to that observed for small nonelectrolytes.  相似文献   

12.
13.
14.
Select transmembrane proteins found in biogenic membranes are known to facilitate rapid bidirectional flip-flop of lipids between the membrane leaflets, while others have no little or no effect. The particular characteristics which determine the extent to which a protein will facilitate flip-flop are still unknown. To determine if the relative polarity of the transmembrane protein segment influences its capacity for facilitation of flip-flop, we have studied lipid flip-flop dynamics for bilayers containing the peptides WALP23 and melittin. WALP23 is used as a model hydrophobic peptide, while melittin consists of both hydrophobic and hydrophilic residues. Sum-frequency vibrational spectroscopy (SFVS) was used to characterize the bilayers and determine the kinetics of flip-flop for the lipid component, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), within the mixed bilayers. The kinetic data were utilized to determine the activation thermodynamics for DSPC flip-flop in the presence of the peptides. Melittin was found to significantly reduce the free energy barrier to DSPC flip-flop when incorporated into the bilayer at 1 mol.%, while incorporation of WALP23 at the same concentration led to a more modest reduction of the free energy barrier. The possible mechanisms by which these peptides facilitate flip-flop are analyzed and discussed in terms of the observed activation thermodynamics.  相似文献   

15.
Transmembrane pH gradients have previously been shown to induce an asymmetric transmembrane distribution of simple lipids that exhibit weak acid or basic characteristics (Hope, M.J. and Cullis, P.R. (1987) J. Biol. Chem. 262, 4360-4366). In the present study we have examined the influence of proton gradients on the inter-vesicular exchange of stearylamine and oleic acid. We show that vesicles containing stearylamine immediately aggregate with vesicles containing phosphatidylserine and that disaggregation occurs subsequently as stearylamine equilibrates between the two vesicle populations. Despite visible flocculation during the aggregation phase, vesicle integrity is maintained. Stearylamine is the only lipid to exchange, fusion does not occur and vesicles are able to maintain a proton gradient. When stearylamine is sequestered to the inner monolayer in response to a transmembrane pH gradient (inside acidic) aggregation is not observed and diffusion of stearylamine to acceptor vesicles is greatly reduced. The ability of delta pH-dependent lipid asymmetry to modulate lipid exchange is also demonstrated for fatty acids. Oleic acid can be induced to transfer from one population of vesicles to another by maintaining a basic interior pH in the acceptor vesicles. Moreover, it is shown that the same acceptor vesicles are capable of depleting serum albumin of bound fatty acid. These results are discussed with respect to the mechanism and modulation of lipid flow between membranes both in vitro and in vivo.  相似文献   

16.
17.
18.
Melittin from bee venom is water-soluble, yet integrates into membranes and lyses cells. Each melittin chain consists of 26 amino acid residues and in aqueous salt solutions it exists as a tetramer. We have determined the molecular structure of the tetramer in two crystal forms grown from concentrated salt solutions. In both crystal forms the melittin polypeptide is a bent alpha-helical rod, with the "inner" surface largely consisting of hydrophobic sidechains and the "outer" surface consisting of hydrophilic side chains. Thus, the helix is strongly amphiphilic. In the tetramer, four such helices contribute their hydrophobic side chains to the center of the molecule. The packing of melittin tetramers is also very similar in the two crystal forms: they are packed in planar layers with the outsides forming hydrophilic surfaces and the insides (the centers of melittin tetramers) forming a hydrophobic surface. We suggest that the surface activity of melittin can be rationalized in terms of these surfaces. The lytic activity of melittin can also be interpreted in terms of the molecular structure observed in the crystals: the hydrophobic inner surface of a melittin helix may integrate into the apolar region of a bilayer with the helix axis approximately parallel to the plane of the bilayer, and with the hydrophilic surface exposed to the aqueous phase. This integration would be expected to disrupt the bilayer because of melittin helix would penetrate only a short distance into it. Additionally, the integration of melittin from one side of a bilayer would produce a surface area difference across the bilayer, perhaps leading to lysis. In this view, melittin is distinct from membrane proteins that penetrate evenly into both leaflets of a bilayer or exactly halfway through a bilayer, and hence we refer to melittin as a surface-active protein.  相似文献   

19.
20.
The influence of a transmembrane pH gradient on the Ca(2+)-induced fusion of phospholipid vesicles, containing free fatty acids, has been investigated. Large unilamellar vesicles composed of an equimolar mixture of cardiolipin, dioleoylphosphatidylcholine, and cholesterol, containing 20 mol % oleic acid, were employed. Fusion was measured using a kinetic assay for lipid mixing, based on fluorescence resonance energy transfer. At pH 7.5, but not at pH 6.0, in the absence of a pH gradient, oleic acid stimulates the fusion of the vesicles by shifting the Ca2+ threshold concentration required for aggregation and fusion of the vesicles from about 13 mM to 10 mM. In the presence of a pH gradient (at an external pH of 7.5 and a vesicle interior pH of 10.5), the vesicles exhibit fusion characteristics similar to vesicles that do not contain oleic acid at all, consistent with an effective sequestration of the fatty acid to the inner monolayer of the vesicle bilayer induced by the imposed pH gradient. The kinetics of the fusion process upon simultaneous generation of the pH gradient across the vesicle bilayer and initiation of the fusion reaction show that the inward movement of oleic acid in response to the pH gradient is extremely fast, occurring well within 1 s. Conversely, dissipation of an imposed pH gradient, by addition of a proton ionophore during the course of the fusion process, results in a rapid enhancement of the rate of fusion due to reequilibration of the oleic acid between the two bilayers leaflets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号