首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intron density in eukaryote genomes varies by more than three orders of magnitude, so there must have been extensive intron gain and/or intron loss during evolution. A favored and partial explanation for this range of intron densities has been that introns have accumulated stochastically in large eukaryote genomes during their evolution from an intron-poor ancestor. However, recent studies have shown that some eukaryotes lost many introns, whereas others accumulated and/or gained many introns. In this article, we discuss the growing evidence that these differences are subject to selection acting on introns depending on the biology of the organism and the gene involved.  相似文献   

2.
3.
The mechanisms and evolutionary dynamics of intron insertion and loss in eukaryotic genes remain poorly understood. Reconstruction of parsimonious scenarios of gene structure evolution in paralogous gene families in animals and plants revealed numerous gains and losses of introns. In all analyzed lineages, the number of acquired new introns was substantially greater than the number of lost ancestral introns. This trend held even for lineages in which vertical evolution of genes involved more intron losses than gains, suggesting that gene duplication boosts intron insertion. However, dating gene duplications and the associated intron gains and losses based on the molecular clock assumption showed that very few, if any, introns were gained during the last ~100 million years of animal and plant evolution, in agreement with previous conclusions reached through analysis of orthologous gene sets. These results are generally compatible with the emerging notion of intensive insertion and loss of introns during transitional epochs in contrast to the relative quiet of the intervening evolutionary spans.  相似文献   

4.
Signaling pathways from the chloroplast to the nucleus   总被引:14,自引:0,他引:14  
Beck CF 《Planta》2005,222(5):743-756
Genetic and physiological studies have to-date revealed evidence for five signaling pathways by which the chloroplast exerts retrograde control over nuclear genes. One of these pathways is dependent on product(s) of plastid protein synthesis, for another the signal is singlet oxygen, a third employs chloroplast-generated hydrogen peroxide, a fourth is controlled by the redox state of the photosynthetic electron transport chain, and a fifth involves intermediates and possibly proteins of tetrapyrrole biosynthesis. These five pathways may be part of a complex signaling network that links the functional and physiological state of the chloroplast to the nucleus. Mutants defective in various steps of photosynthesis reveal a surprising diversity in nuclear responses suggesting the existence of a complex signaling network.  相似文献   

5.
6.
On the incidence of intron loss and gain in paralogous gene families   总被引:3,自引:0,他引:3  
Understanding gene duplication and gene structure evolution are fundamental goals of molecular evolutionary biology. A previous study by Babenko et al. (2004. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res. 32:3724-3733) employed Dollo parsimony to infer spliceosomal intron losses and gains in paralogous gene families and concluded that there was a general excess of gains over losses. This result contrasts with patterns in orthologous genes, in which most lineages show an excess of intron losses over gains, suggesting the possibility of fundamentally different modes of intron evolution between orthologous and paralogous genes. We further studied the data and found a low level of intron position conservation with outgroups, and this led to problems with using Dollo parsimony to analyze the data. Statistical reanalysis of the data suggests, instead, that intron losses have outnumbered intron gains in paralogous gene families.  相似文献   

7.
内含子插入和丢失的进化动力及机制尚存有许多疑问。我们拟通过对真核生物的604个同源基因的蛋白高度保守区域内含子-外显子的结构研究, 对人Homo sapiens、大鼠Rattus norvegicus、小鼠Mus musculus、黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae和拟南芥Arabidopsis thaliana中的12 585个内含子、3 074个保守内含子进行分析, 推断出不同系统中内含子进化趋势。结果显示在进化中双翅目昆虫丢失了约850多个内含子, 脊椎动物获得了1 600多个内含子, 而双翅目昆虫获得的内含子及脊椎动物丢失的内含子则较少。在内含子分布上, 除酵母有明显5′末端倾向性外, 双翅目昆虫也显示出内含子分布倾向于基因的5′端, 而在脊椎动物及拟南芥中则没有这种分布的倾向性。这可能是由于双翅目昆虫丢失的内含子大多位于基因的3′端造成的。通过对现在脊椎动物内含子分布及获得的内含子的插入相的研究, 发现内含子的获得可能在一定程度上导致了现存基因的内含子中插入相0的内含子最多这一倾向。  相似文献   

8.
9.
10.
Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data   总被引:3,自引:0,他引:3  
DNA sequence data from the chloroplast noncoding rpl16 intron are used to address phylogenetic relationships among the major lineages of the grass family, with particular emphasis on the highly heterogeneous subfamily Bambusoideae and the basal lineages. Thirty-five grass sequences representing all six currently recognized major groups of the family and one outgroup sequence were analyzed using both parsimony and distance methods. The phylogenetic analyses indicated: (1) Puelia, a traditionally isolated bambusoid genus, is the most basal lineage in the BOP clade (Bambusoideae, Oryzoideae, and Pooideae); (2) the bambusoid clade is a sister group to the pooid clade; and (3) the monophyletic oryzoid clade is well separated from the bambusoid clade. The study further confirmed the recognition of two primary groups in the grass family: the BOP clade and the PACC clade (Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae); it also provided further evidence that the traditional subfamily Bambusoideae is highly heterogeneous and phylogenetically unacceptable. The data support Streptochaeteae, Anomochloeae, and Phareae as the most basal lineages among the extant grasses. Within the BOP clade, oryzoids and pooids are confirmed as two monophyletic clades, but the bambusoid clade, including only the woody bamboo tribe Bambuseae and the herbaceous bamboo tribe Olyreae, is relatively weakly supported. The study also indicated that the chloroplast noncoding region sequence data could be useful in phylogenetic analysis at relatively high taxonomic levels.  相似文献   

11.
12.
Numerous previous studies have elucidated 2 surprising patterns of spliceosomal intron evolution in diverse eukaryotes over the past roughly 100 Myr. First, rates of recent intron gain in a wide variety of eukaryotic lineages have been surprisingly low, far too low to explain modern intron densities. Second, intron losses have outnumbered intron gains over a variety of lineages. For several reasons, land plants might be expected to have comparatively high rates of intron gain and thus to represent a possible exception to this pattern. However, we report several studies that indicate low rates of intron gain and an excess of intron losses over intron gains in a variety of plant lineages. We estimate that intron losses have outnumbered intron gains in recent evolution in Arabidopsis thaliana (roughly 12.6 times more losses than gains), Oryza sativa (9.8 times), the green alga Chlamydomonas reinhardtii (5.1 times), and the Bigelowiella natans nucleomorph, an enslaved green algal nucleus (2.8 times). We estimate that during recent evolution, A. thaliana and O. sativa have experienced very low rates of intron gain of around one gain per gene per 2.6-8.0 billion years. In addition, we compared 8,258 pairs of putatively orthologous A. thaliana-O. sativa genes. We found that 5.3% of introns in conserved coding regions are species-specific. Observed species-specific A. thaliana and O. sativa introns tend to be exact and to lie adjacent to each other along the gene, in a pattern suggesting mRNA-mediated intron loss. Our results underscore that low intron gain rates and intron number reduction are common features of recent eukaryotic evolution. This pattern implies that rates of intron creation were higher during earlier periods of evolution and further focuses attention on the causes of initial intron proliferation.  相似文献   

13.
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.  相似文献   

14.
15.
16.
We examined the gene structure of a set of 2563 Arabidopsis thaliana paralogous pairs that were duplicated simultaneously 20-60 MYA by tetraploidy. Out of a total of 23,164 introns in these genes, we found that 10,004 pairs have been conserved and 578 introns have been inserted or deleted in the time since the duplication event. This intron insertion/deletion rate of 2.7 x 10(-3) to 9.1 x 10(-4) per site per million years is high in comparison to previous studies. At least 56 introns were gained and 39 lost based on parsimony analysis of the phylogenetic distribution of these introns. We found weak evidence that genes undergoing intron gain and loss are biased with respect to gene ontology terms. Gene pairs that experienced at least 2 intron insertions or deletions show evidence of enrichment for membrane location and transport and transporter activity function. We do not find any relationship of intron flux to expression level or G + C content of the gene. Detection of a bias in the location of intron gains and losses within a gene depends on the method of measurement: an intragene method indicates that events (specifically intron losses) are biased toward the 3' end of the gene. Despite the relatively recent acquisition of these introns, we found only one case where we could identify the mechanism of intron origin--the TOUCH3 gene has experienced 2 tandem, partial, internal gene duplications that duplicated a preexisting intron and also created a novel, alternatively spliced intron that makes use of a duplicated pair of cryptic splice sites.  相似文献   

17.
18.
The discovery of disrupted rps19 genes in Arabidopsis mitochondria prompted speculation about the transfer to the nuclear compartment. We here describe the functional gene transfer of rps19 into the nucleus of Arabidopsis. Molecular cloning and sequence analysis of rps19 show that the nuclear gene encodes a long N-terminal extension. Import studies of the precursor protein indicate that only a small part of this extension is cleaved off during import. The larger part of the extension, which shows high similarity to conserved RNA-binding domains of the RNP-CS type, became part of the S19 protein. In the Escherichia coli ribosome S19 forms an RNA-binding complex as heterodimer with S13. By using immuno-analysis and import studies we show that a eubacterial-like S13 protein is absent from Arabidopsis mitochondria, and is not substituted by either a chloroplastic or a cytosolic homologue of this ribosomal protein. We therefore propose that either a highly diverged or missing RPS13 has been functionally replaced by an RNP domain that most likely derived from a glycine-rich RNA-binding protein. These results represent the first case of a functional replacement of a ribosomal protein by a common RNA-binding domain and offer a new view on the flexibility of biological systems in using well-adapted functional domains for different jobs.  相似文献   

19.
20.
Very divergent psbA-trnH chloroplast sequences were, for some Eryngiun alpinum individuals, repeatedly obtained and could not be attributed to contaminations nor to casual intraspecific variation. The design of external primers allowed the amplification of two different sequences for the same individuals. The divergent sequences were found to be more variable than their counterparts, to have a low GC content and to display a nonsynonymous substitution in psbA C-terminal region, all reasons that led us to hypothesize that they are paraloguous fragments transferred into the nucleus (NuPt). Quantitative polymerase chain reactions confirmed this hypothesis. Such NuPt might have severe implications in plant phylogeography and barcoding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号