首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the “window” between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH·. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis. For the two most active SkQs, namely SkQ1 and SkQR1, C 1/2 values for inhibition of the H2O2-induced apoptosis in fibroblasts appear to be as low as 1·10−11 and 8·10−13 M, respectively. SkQR1, a fluorescent representative of the SkQ family, specifically stains a single type of organelles in the living cell, i.e. energized mitochondria. Such specificity is explained by the fact that it is the mitochondrial matrix that is the only negatively-charged compartment inside the cell. Assuming that the Δψ values on the outer cell and inner mitochondrial membranes are about 60 and 180 mV, respectively, and taking into account distribution coefficient of SkQ1 between lipid and water (about 13,000: 1), the SkQ1 concentration in the inner leaflet of the inner mitochondrial membrane should be 1.3·108 times higher than in the extracellular space. This explains the very high efficiency of such compounds in experiments on cell cultures. It is concluded that SkQs are rechargeable, mitochondria-targeted antioxidants of very high efficiency and specificity. Therefore, they might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1589–1606. This and the following four articles were written by the request of the Editorial Board of Biochemistry (Moscow).  相似文献   

2.
Mitochondria-targeted cationic plastoquinone derivative SkQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) has been investigated as a potential tool for treating a number of ROS-related ocular diseases. In OXYS rats suffering from a ROS-induced progeria, very small amounts of SkQ1 (50 nmol/kg per day) added to food were found to prevent development of age_induced cataract and retinopathies of the eye, lipid peroxidation and protein carbonylation in skeletal muscles, as well as a decrease in bone mineralization. Instillation of drops of 250 nM SkQ1 reversed cataract and retinopathies in 3-12-month-old (but not in 24-month-old) OXYS rats. In rabbits, experimental uveitis and glaucoma were induced by immunization with arrestin and injections of hydroxypropyl methyl cellulose to the eye anterior sector, respectively. Uveitis was found to be prevented or reversed by instillation of 250 nM SkQ1 drops (four drops per day). Development of glaucoma was retarded by drops of 5 μM SkQ1 (one drop daily). SkQ1 was tested in veterinarian practice. A totally of 271 animals (dogs, cats, and horses) suffering from retinopathies, uveitis, conjunctivitis, and cornea diseases were treated with drops of 250 nM SkQ1. In 242 cases, positive therapeutic effect was obvious. Among animals suffering from retinopathies, 89 were blind. In 67 cases, vision returned after SkQ1 treatment. In ex vivo studies of cultivated posterior retina sector, it was found that 20 nM SkQ1 strongly decreased macrophagal transformation of the retinal pigmented epithelial cells, an effect which might explain some of the above SkQ1 activities. It is concluded that low concentrations of SkQ1 are promising in treating retinopathies, cataract, uveitis, glaucoma, and some other ocular diseases. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1641–1654.  相似文献   

3.
It was proposed that increased level of mitochondrial reactive oxygen species (ROS), mediating execution of the aging program of an organism, could also be critical for neoplastic transformation and tumorigenesis. This proposal was addressed using new mitochondria-targeted antioxidant SkQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) that scavenges ROS in mitochondria at nanomolar concentrations. We found that diet supplementation with SkQ1 (5 nmol/kg per day) suppressed spontaneous development of tumors (predominantly lymphomas) in p53-/- mice. The same dose of SkQ1 inhibited the growth of human colon carcinoma HCT116/p53-/- xenografts in athymic mice. Growth of tumor xenografts of human HPV-16-associated cervical carcinoma SiHa was affected by SkQ1 only slightly, but survival of tumor-bearing animals was increased. It was also shown that SkQ1 inhibited the tumor cell proliferation, which was demonstrated for HCT116 p53-/- and SiHa cells in culture. Moreover, SkQ1 induced differentiation of various tumor cells in vitro. Coordinated SkQ1-initiated changes in cell shape, cytoskeleton organization, and E-cadherin-positive intercellular contacts were observed in epithelial tumor cells. In Ras- and SV40-transformed fibroblasts, SkQ1 was found to initiate reversal of morphological transformation of a malignant type, restoring actin stress fibers and focal adhesion contacts. SkQ1 suppressed angiogenesis in Matrigel implants, indicating that mitochondrial ROS could be important for tumor angiogenesis. This effect, however, was less pronounced in HCT116/p53-/- tumor xenografts. We have also shown that SkQ1 and related positively charged antioxidants are substrates of the P-glycoprotein multidrug resistance pump. The lower anti-tumor effect and decreased intracellular accumulation of SkQ1, found in the case of HCT116 xenografts bearing mutant forms of p53, could be related to a higher level of P-glycoprotein. The effects of traditional antioxidant N-acetyl-L-cysteine (NAC) on tumor growth and tumor cell phenotype were similar to the effects of SkQ1 but more than 1,000,000 times higher doses of NAC than those of SkQ1 were required. Extremely high efficiency of SkQ1, related to its accumulation in the mitochondrial membrane, indicates that mitochondrial ROS production is critical for tumorigenesis at least in some animal models. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1622–1640.  相似文献   

4.
Effects of 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SkQ1) and 10-(6′-plastoquinonyl) decylrhod-amine 19 (SkQR1) on rat models of H2O2- and ischemia-induced heart arrhythmia, heart infarction, kidney ischemia, and stroke have been studied ex vivo and in vivo. In all the models listed, SkQ1 and/or SkQR1 showed pronounced protective effect. Supplementation of food with extremely low SkQ1 amount (down to 0.02 nmol SkQ1/kg per day for 3 weeks) was found to abolish the steady heart arrhythmia caused by perfusion of isolated rat heart with H2O2 or by ischemia/reperfusion. Higher SkQ1 (125–250 nmol/kg per day for 2–3 weeks) was found to decrease the heart infarction region induced by an in vivo ischemia/reperfusion and lowered the blood levels of lactate dehydrogenase and creatine kinase increasing as a result of ischemia/reperfusion. In single-kidney rats, ischemia/reperfusion of the kidney was shown to kill the majority of the animals in 2–4 days, whereas one injection of SkQ1 or SkQR1 (1 μmol/kg a day before ischemia) saved lives of almost all treated rats. Effect of SkQR1 was accompanied by decrease in ROS (reactive oxygen species) level in kidney cells as well as by partial or complete normalization of blood creatinine and of some other kidney-controlled parameters. On the other hand, this amount of SkQ1 (a SkQ derivative of lower membrane-penetrating ability than SkQR1) saved the life but failed to normalize ROS and creatinine levels. Such an effect indicates that death under conditions of partial kidney dysfunction is mediated by an organ of vital importance other than kidney, the organ in question being an SkQ1 target. In a model of compression brain ischemia/reperfusion, a single intraperitoneal injection of SkQR1 to a rat (1 μmol/kg a day before operation) effectively decreased the damaged brain area. SkQ1 was ineffective, most probably due to lower permeability of the blood-brain barrier to this compound. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1607–1621.  相似文献   

5.
It is known that an addition of FeSO4 in the presence of ascorbic acid to cells or mitochondria can injure energy coupling and some other functions in mitochondria. The present study demonstrates that decrease in ascorbate concentration from 4 to 0.2 mM in the presence of the same low concentrations of FeSO4 accelerates the nonspecific pore opening, while cyclosporin A prevents and under some conditions reverses the pore opening. Hydrophobic cations SkQ1 and MitoQ (structural analogs of plastoquinone and coenzyme Q(10), respectively) delay pore opening, SkQ1 being more efficient. It is known that an increase in matrix ADP concentration delays pore opening, while an addition of carboxyatractylate to mitochondria accelerates the beginning of pore opening. Preliminary addition of SkQ1 into a mitochondrial suspension increased the effect of ADP and decreased the effect of carboxyatractylate. These results suggest that under the conditions used SkQ1 protects mitochondria from oxidative damage as an antioxidant when added at extremely low concentrations.  相似文献   

6.
Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/? mice are consistent with an early‐onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/? mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1?/? MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early‐onset aging.  相似文献   

7.
8.
Cellular architectural proteins often participate in organ development and maintenance. Although functional decay of some of these proteins during aging is known, the cell‐type‐specific developmental role and the cause and consequence of their subsequent decay remain to be established especially in mammals. By studying lamins, the nuclear structural proteins, we demonstrate that lamin‐B1 functions specifically in the thymic epithelial cells (TECs) for proper thymus organogenesis. An up‐regulation of proinflammatory cytokines in the intra‐thymic myeloid immune cells during aging accompanies a gradual reduction of lamin‐B1 in adult TECs. We show that these cytokines can cause senescence and lamin‐B1 reduction of the young adult TECs. Lamin‐B1 supports the expression of TEC genes that can help maintain the adult TEC subtypes we identified by single‐cell RNA‐sequencing, thymic architecture, and function. Thus, structural proteins involved in organ building and maintenance can undergo inflammation‐driven decay which can in turn contribute to age‐associated organ degeneration.  相似文献   

9.
The study of Hutchinson–Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin‐driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1‐target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.  相似文献   

10.
11.
12.
The interaction of the 5-14, 1-14, and 1-24 fragments of ACTH with sonicated phospholipid bilayers containing egg yolk phosphatidylcholine (EPC) either pure or mixed with 10 mole % phosphatidic acid (EPA), was investigated by proton nuclear magnetic resonance (1H-nmr). The effects observed with zwitterionic EPC vesicles were small, indicating a low binding of the ACTH derivatives. The N-terminal aromatic resonances of the ACTH peptides were markedly broadened in the presence of negatively charged vesicles (EPC/EPA 9:1 M/M), while those of the C-terminal end were barely affected, showing that ACTH interacts with its N-terminal fragment. The choline resonance of the EPC molecules of the outer monolayer was shifted and broadened upon ACTH binding to the lipid vesicles, while that of the inner layer was not affected, suggesting that the peptide molecules interact only with the external leaflet of the lipid bilayer. The C2H and C4H resonances of the histidine-6 side chain were both shifted downfield upon peptide binding to the negatively charged lipid interface. In the case of the 1–24 derivative, these resonances were also split into two signals reflecting two different species of membrane-bound ACTH 1–24. Analysis of the line width and chemical shift variations of the ACTH and lipid resonances observed upon peptide binding shows that the membrane-binding potency of the shorter 5–14+1 fragment, which presents a +1 net charge, is roughly similar to that of the highly cationic 1–24+6 (net charge +6) derivative, implying that the 15–24+5 segment is not essential for membrane binding. The nmr measurements at a fixed lipid-to-peptide ratio in the presence of increasing amounts of spin-labeled lipids demonstrate that the N-terminal fragment of ACTH does not penetrate the hydrophobic core of the bilayer, and should lie parallel to the membrane surface. © 1997 John Wiley & Sons, Inc. Biopoly 42: 731–744, 1997  相似文献   

13.
Abstract

A series of 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives, N5a–5l, was designed, synthesized and evaluated for their FGFR1-inhibition ability as well as cytotoxicity against three cancer cell lines (H460, B16F10 and A549) in vitro. Several compounds displayed good-to-excellent potency against these cancer cell lines compared to SU5402. Structure–activity relationship analyses indicated that compounds with a rigid structure and more heteroatoms at the side chain of the parent ring were more effective than those without these substitutions. The compound N5g (37.4% FGFR1 inhibition at 1.0?μM) was identified to have the most potent antitumor activities, with IC50 values of 5.472, 4.260 and 5.837?μM against H460, B16F10 and A549 cell lines, respectively. Together, our results suggest that 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives may serve as potential agents for the treatment of FGFR1-mediated cancers.  相似文献   

14.
Long noncoding RNA (lncRNA) exerts a potential regulatory role in tumorigenesis. LncRNA TUG1 expression remains high in oral squamous cell carcinoma (OSCC) tissues. However, its biological mechanism in OSCC remains unknown. In this study, TUG1 expression in OSCC cells was detected by quantitative real-time polymerase chain reaction. Proliferative and migratory potentials of OSCC cells were determined by Cell Counting Kit 8, 5-Ethynyl-2′- deoxyuridine (EdU), and Transwell assay, respectively. We identified the potential target of TUG1 through bioinformatics and dual-luciferase reporter gene assay. Furthermore, their interaction and functions in regulating the development of OSCC were clarified by western blot and RNA immunoprecipitation assay. Our results demonstrated a high expression of TUG1 in OSCC cells. Overexpression of TUG1 markedly accelerated proliferative and migratory potentials of OSCC cells. Besides, TUG1 could positively regulate the expression of distal-less homeobox 1 (DLX1) by competing with miR-524-5p. These results indicated that TUG1 participated in the development of OSCC as a competing endogenous RNA to competitively bind to miR-524-5p and thus mediate DLX1 expression.  相似文献   

15.
Prostate cancer (PCa) is one of the major cancers affecting males with high mortality around the world. Recent studies have found that some long noncoding RNAs play a critical part in the cellular processes of PCa. In our study, aberrant expressed lymphoid enhancer-binding factor-1 antisense RNA 1 (LEF1-AS1), microRNA-330-5p (miR-330-5p), and lymphoid enhancer-binding factor-1 (LEF1) were screened out from a microarray database, the role of the novel noncoding RNA regulatory circuitry in the initiation and development of PCa was investigated. LEF1-AS1 and LEF1 were highly expressed while miR-330-5p was poorly expressed in PCa. Following that, the PCa PC-3 cell line was adopted for subsequently experiments, in which the expression of LEF1-AS1 and miR-330-5p was subsequently altered by means of exogenous transfection. After that, the effects of up- or downregulation of LEF1-AS1 and miR-330-5p on epithelial–mesenchymal transition (EMT) and the cell ability for proliferation, invasion, migration in vitro, and tumorigenesis and lymph node metastasis (LNM) in vivo were evaluated. RNA crosstalk revealed that LEF1-AS1 bound to miR-330-5p and LEF1 was the target gene of miR-330-5p. Silenced LEF1-AS1 or elevated miR-330-5p exhibited inhibited EMT processes, reduced ability of proliferation, invasion and migration, coupling with decreased tumorigenesis and LNM in nude mice. The key findings of this study collectively propose downregulation of LEF1-AS1 competing with miR-330-5p to inhibit EMT, invasion and migration of PCa by LEF1 repression.  相似文献   

16.
A series of arylpiperazine derivatives of hydantoin-3-acetate, including previously obtained 5,5-diphenylhydantoin (17) and new-synthesized spirofluorene-hydantoin derivatives (812), were investigated in the search for new inhibitors of the tumour multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells. Synthesis of new compounds (812) was performed. Crystal structures of two compounds (8 and 11) were determined by X-ray diffraction method. The conformations of the investigated molecules (8 and 11) in the crystalline samples are different. The bent conformation seems to be more favourable for biological activity than the extended one. The efflux pump inhibitory properties of the compounds 112 were evaluated in the fluorescence uptake assay using rhodamine 123 dye in mouse T-lymphoma model in vitro. Their cytotoxic action was examined, too. All compounds with methyl acetate moiety displayed high potency to inhibit the MDR efflux pump. The most active compound, methyl 2-(1-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-5,5-diphenylhydantoin-3-yl)acetate (5), tested at 1/10 of verapamil concentration displayed the 9-fold higher P-gp inhibitory action.  相似文献   

17.
We report an expansion of the structure-activity relationship (SAR) of a novel series of indole-3-heterocyclic CB1 receptor agonists. Starting from the potent but poorly soluble lead, 1, a rational approach was taken in order to balance solubility, hERG activity and potency while retaining the desired long duration of action within the mouse tail flick test. This led to the discovery of compound 38 which successfully progressed into clinical development.  相似文献   

18.
19.
The structural features of 4-ethylsulphonylnaphthalene-1-sulphonamide (ENS) responsible for the induction of DNA synthesis in the mouse bladder have been investigated using a method in which DNA synthesis is measured by the uptake of a thymidine analogue, [125I]5-iodo-2′-deoxyuridine (IUdR). The ability to stimulate DNA synthesis was unaffected by the nature of the alkyl group in 4-alkylsulphonylnaphthalene-1-sulphonamide. The sulphonamide group appeared to be essential to the activity of the molecule because naphthalene-1,4-disulphonamide was active whereas 1,4-diethylsulphonylnaphthalene was not. Maximum activity was found when the sulphonamide group was attached to an aromatic system (benzene or naphthalene) containing an alkylsulphonyl or a sulphonamide group. Bladder carcinogens other than ENS failed to stimulate the uptake of [125I]IUdR sufficiently to produce statistically significant results. The reasons for the large variation in response between individual mice are discussed, as are the implications of the structure activity relationships to the mode of action of ENS.  相似文献   

20.
Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q2 = 0.802, r2ncv = 0.979, and the best CoMSIA model has q2 = 0.799, r2ncv = 0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300 K. All the results can provide us more useful information for our further drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号