首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-bungarotoxin (alpha-BTX) is a highly toxic snake neurotoxin that binds to acetylcholine receptor (AChR) at the neuromuscular junction, and is a potent inhibitor of this receptor. In the following we review multi-phase research of the design, synthesis and structure analysis of peptides that bind alpha-BTX and inhibit its binding to AChR. Structure-based design concomitant with biological information of the alpha-BTX/AChR system yielded 13-mer peptides that bind to alpha-BTX with high affinity and are potent inhibitors of alpha-BTX binding to AChR (IC(50) of 2 nM). X-Ray and NMR spectroscopy reveal that the high-affinity peptides fold into an anti-parallel beta-hairpin structure when bound to alpha-BTX. The structures of the bound peptides and the homologous loop of acetylcholine binding protein, a soluble analog of AChR, are remarkably similar. Their superposition indicates that the toxin wraps around the binding-site loop, and in addition, binds tightly at the interface of two of the receptor subunits and blocks access of acetylcholine to its binding site. The procedure described in this article may serve as a paradigm for obtaining high-affinity peptides in biochemical systems that contain a ligand and a receptor molecule.  相似文献   

2.
A set of seven peptides constituting the various loops and most of the surface areas of -bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47).  相似文献   

3.
Abstract: Identification of residues in the skeletal muscle nicotinic acetylcholine receptor (AChR) that bind snake venom a-neurotoxin antagonists of acetylcholine [e.g., α-bungarotoxin (α-BTx)] provides structural information about the neurotransmitter binding region of the receptor. Using synthetic peptides of the human AChR α-subunit region 177–208, we previously localized a pharmacologically specific binding site for α-BTx in segment 185–199. To define in more detail the residues that influence the binding of α-BTx to this region, we prepared 16 peptide analogues of the α-subunit segment 185–200, with the amino acid Lalanine sequentially replacing each native amino acid. Circular dichroism spectroscopy did not reveal changes in the secondary structure of the peptides except for the analogue in which Pro194 was substituted with alanine. This implies that any change in α-BTx binding could be attributed to replacement of the native residue's side chain by alanine's methyl group, rather than to a change in the structure of the peptide. The influence of each substitution with alanine was determined by comparing the analogue to the parental sequence α 185–200 in solution-phase competition with native human AChR for binding of 125I-labeled α-BTx. The binding of α-BTx by analogue peptides with alanine substituted for Tyr190, Cys192, or Cys193 was greatly diminished. Binding of α-BTx to peptides containing alanine replacements at Val188, Thr189, Pro194, Asp195, or Tyr198 was also reduced significantly (p < 0.003). An unanticipated finding was that substitution of alanine for Ser191 significantly increased α-BTx binding (p < 0.003). The data imply that these nine amino acids influence the binding of the antagonist, α-BTx, to the nicotinic acetylcholine receptor of human skeletal muscle, and confirm previous reports for certain contact residues for α-BTX that were found in region α181-200 of the Torpedo AChR.  相似文献   

4.
The extracellular domain of the nicotinic acetylcholine receptor isoforms formed by three α4 and two β2 subunits ((α4)3(β2)2 nAChR) harbors two high-affinity “canonical” acetylcholine (ACh)-binding sites located in the two α4:β2 intersubunit interfaces and a low-affinity “noncanonical” ACh-binding site located in the α4:α4 intersubunit interface. In this study, we used ACh, cytisine, and nicotine (which bind at both the α4:α4 and α4:β2 interfaces), TC-2559 (which binds at the α4:β2 but not at the α4:α4 interface), and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI, which binds at the α4:α4 but not at the α4:β2 interface), to investigate the binding and gating properties of CMPI at the α4:α4 interface. We recorded whole-cell currents from Xenopus laevis oocytes expressing (α4)3(β2)2 nAChR in response to applications of these ligands, alone or in combination. The electrophysiological data were analyzed in the framework of a modified Monod–Wyman–Changeux allosteric activation model. We show that CMPI is a high-affinity, high-efficacy agonist at the α4:α4 binding site and that its weak direct activating effect is accounted for by its inability to productively interact with the α4:β2 sites. The data presented here enhance our understanding of the functional contributions of ligand binding at the α4:α4 subunit interface to (α4)3(β2)2 nAChR-channel gating. These findings support the potential use of α4:α4 specific ligands to increase the efficacy of the neurotransmitter ACh in conditions associated with decline in nAChRs activity in the brain.  相似文献   

5.
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) α subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing αN217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for αN217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-α-bungarotoxin binding, is also enhanced 20-fold by αN217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the β, ε, or δ subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.  相似文献   

6.
S J Tzartos  C Valcana  R Kouvatsou    A Kokla 《The EMBO journal》1993,12(13):5141-5149
Tyrosine phosphorylation of the nicotinic acetylcholine receptor (AChR) seems to be involved in AChR desensitization and localization on the postsynaptic membrane. This study reveals a probable function of the single known beta subunit phosphorylation site (beta Tyr355) and provides suitable tools for its study. The epitopes for 15 monoclonal antibodies (mAbs) against the cytoplasmic side of the AChR beta subunit were precisely mapped using > 100 synthetic peptides attached on polyethylene rods. Eleven mAbs bound to a very immunogenic cytoplasmic epitope (VICE-beta) on Torpedo beta 352-359, which contains the beta Tyr355, and to the corresponding sequence of human AChR. The contribution of each VICE-beta residue to mAb binding was then studied by peptide analogues having single residue substitutions. Overall, each of the residues beta 354-359, including beta Tyr355, proved critical for mAb binding. Two of our four mAbs known to block the ion channel were found to bind at (mAb148) or close (mAb10) to VICE-beta. Tyrosine phosphorylation of Torpedo AChR by endogenous kinase(s) selectively reduced binding of some VICE-beta mAbs, including the channel blocking mAb148. We conclude that VICE-beta probably plays a key role in AChR function. Elucidation of this role should be facilitated by the identified mAb tools.  相似文献   

7.
–Bungarotoxin (–BuTx) binds with high a.nity to the nicotinic acetylcholine receptor (AChR) of most species, mainly to sequences around the two cysteines at positions 192 and 193 of the –subunit, but other sequences of the –subunit and of the adjacent γ– or ε– and δ–subunits are also important in the native molecule. –BuTx binds strongly to human AChR but the short neurotoxins, for instance Erabutoxin B, are relatively ineffective at the human neuromuscular junction. In this article we compare the a.nity of 125I––BuTx for Torpedo and human muscle AChR and the ability of neurotoxins to inhibit this binding. We examine the contribution to –BuTx binding of the three amino acids that differ between human and Torpedo AChR –185—199. In addition, we show that an –185—199, peptide that binds strongly to 125I––BuTx and can inhibit its binding in solution, is also capable of protecting the AChR on a cell line or at the neuromuscular junction. Such peptides might be useful in the treatment of acute envenoming or the autoantibody–mediated block of AChR function that can occur in human disorders. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   

8.
The nicotinic acetylcholine receptor (AChR) of human skeletal muscle has a reducible disulfide bond near the neurotransmitter binding site in each of its alpha-subunits. By testing a panel of overlapping synthetic peptides encompassing the alpha-subunit segment 177-208 (containing cysteines 192 and 193) we found that specific binding of 125I-labelled alpha-bungarotoxin (alpha-BTx) was maximal in the region 185-199. Binding was inhibited by unlabelled alpha-BTx greater than d-tubocurarine greater than atropine greater than carbamylcholine. Peptide 193-208 did not bind alpha-BTx, whereas 177-192 retained 40% binding activity. Peptides corresponding to regions 125-147 (containing cysteines 128 and 142) and 389-409, or peptides unrelated to sequences of the AChR failed to bind alpha-BTx. No peptide bound 125I-alpha-labelled parathyroid hormone. The apparent affinity (KD) of alpha-BTx binding to immobilized peptides 181-199 and 185-199 was approximately 25 microM and 80 microM, respectively, in comparison with alpha-BTx binding to native Torpedo ACh receptor (apparent KD approximately 0.5 nM). In solution phase, both peptides effectively competed with solubilized native human AChR for binding of alpha-BTx, and peptide 185-199 showed little evidence of dissociation after 24 h. Peptides that bound alpha-BTx did so when sulfhydryls were reduced. Cysteine modification, by N-ethylmaleimide or acetamidomethylation, abolished alpha-BTx-binding activity. The data implicate the region of cysteines 192 and 193 in the binding of neurotransmitter to the human receptor.  相似文献   

9.
Myasthenia gravis (MG) is caused by autoantibodies against the nicotinic acetylcholine receptor (AChR) of the neuromuscular junction. The anti-AChR antibodies are heterogeneous. However, a small region on the extracellular part of the AChR alpha subunit, called the main immunogenic region (MIR), seems to be the major target of the anti-AChR antibodies, but not of the specific T-cells, in experimental animals and possibly in MG patients. The major loop of the overlapping epitopes for all testable anti-MIR monoclonal antibodies (MAbs) was localized within residues 67-76 (WNPADYGGIK for Torpedo and WNPDDYGGVK for human AChR) of the alpha subunit. The N-terminal half of alpha 67-76 is the most critical, Asn68 and Asp71 being indispensable for binding. Yet anti-MIR antibodies are functionally and structurally quite heterogeneous. Anti-MIR MAbs do not affect channel gating, but they are very potent in mediating acceleration of AChR degradation (antigenic modulation) in cell cultures and in transferring experimental MG in animals. Fab fragments of anti-MIR MAbs bound to the AChR prevent the majority of the MG patients' antibodies from binding to and causing loss of the AChR. Whether this inhibition means that most MG antibodies bind on the same small region or is a result of broad steric/allosteric effects is under current investigation.  相似文献   

10.
Human cytomegalovirus (HCMV) entry involves trimer (gH/gL/gO) that interacts with PDGFRα in fibroblasts. Entry into epithelial and endothelial cells requires trimer, which binds unidentified receptors, and pentamer (gH/gL/UL128-131), which binds neuropilin-2. To identify functionally important domains in trimer, we screened an overlapping 20-mer gO peptide library and identified two sets of peptides: 19/20 (a.a. 235–267) and 32/33 (a.a. 404–436) that could block virus entry. Soluble trimer containing wild type gO blocked HCMV entry, whereas soluble trimers with the 19/20 or 32/33 sequences mutated did not block entry. Interestingly, the mutant trimers retained the capacity to bind to cellular receptors including PDGFRα. Peptide 19/20 and 32/33 sequences formed a lobe extending from the surface of gO and an adjacent concave structure, respectively. Neither of these sets of sequences contacted PDGFRα. Instead, our data support a model in which the 19/20 and 32/33 trimer sequences function downstream of receptor binding, e.g. trafficking of HCMV into endosomes or binding to gB for entry fusion. We also screened for peptides that bound antibodies (Abs) in human sera, observing that peptides 20 and 26 bound Abs. These peptides engendered neutralizing Abs (NAbs) after immunization of rabbits and could pull out NAbs from human sera. Peptides 20 and 26 sequences represent the first NAb epitopes identified in trimer. These studies describe two important surfaces on gO defined by: i) peptides 19/20 and 32/33, which apparently act downstream of receptor binding and ii) peptide 26 that interacts with PDGFRα. Both these surfaces are targets of NAbs.  相似文献   

11.
Identification of all residues involved in the recognition and binding of cholinergic ligands (e.g. agonists, competitive antagonists, and noncompetitive agonists) is a primary objective to understand which structural components are related to the physiological function of the nicotinic acetylcholine receptor (AChR). The picture for the localization of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are located mainly on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are identical, the observed high and low affinity for different ligands on the receptor is conditioned by the interaction of the alpha subunit with other non-alpha subunits. This molecular interaction takes place at the interface formed by the different subunits. For example, the high-affinity acetylcholine (ACh) binding site of the muscle-type AChR is located on the alphadelta subunit interface, whereas the low-affinity ACh binding site is located on the alphagamma subunit interface. Regarding homomeric AChRs (e.g. alpha7, alpha8, and alpha9), up to five binding sites may be located on the alphaalpha subunit interfaces. From the point of view of subunit arrangement, the gamma subunit is in between both alpha subunits and the delta subunit follows the alpha aligned in a clockwise manner from the gamma. Although some competitive antagonists such as lophotoxin and alpha-bungarotoxin bind to the same high- and low-affinity sites as ACh, other cholinergic drugs may bind with opposite specificity. For instance, the location of the high- and the low-affinity binding site for curare-related drugs as well as for agonists such as the alkaloid nicotine and the potent analgesic epibatidine (only when the AChR is in the desensitized state) is determined by the alphagamma and the alphadelta subunit interface, respectively. The case of alpha-conotoxins (alpha-CoTxs) is unique since each alpha-CoTx from different species is recognized by a specific AChR type. In addition, the specificity of alpha-CoTxs for each subunit interface is species-dependent.In general terms we may state that both alpha subunits carry the principal component for the agonist/competitive antagonist binding sites, whereas the non-alpha subunits bear the complementary component. Concerning homomeric AChRs, both the principal and the complementary component exist on the alpha subunit. The principal component on the muscle-type AChR involves three loops-forming binding domains (loops A-C). Loop A (from mouse sequence) is mainly formed by residue Y(93), loop B is molded by amino acids W(149), Y(152), and probably G(153), while loop C is shaped by residues Y(190), C(192), C(193), and Y(198). The complementary component corresponding to each non-alpha subunit probably contributes with at least four loops. More specifically, the loops at the gamma subunit are: loop D which is formed by residue K(34), loop E that is designed by W(55) and E(57), loop F which is built by a stretch of amino acids comprising L(109), S(111), C(115), I(116), and Y(117), and finally loop G that is shaped by F(172) and by the negatively-charged amino acids D(174) and E(183). The complementary component on the delta subunit, which corresponds to the high-affinity ACh binding site, is formed by homologous loops. Regarding alpha-neurotoxins, several snake and alpha-CoTxs bear specific residues that are energetically coupled with their corresponding pairs on the AChR binding site. The principal component for snake alpha-neurotoxins is located on the residue sequence alpha1W(184)-D(200), which includes loop C. In addition, amino acid sequence 55-74 from the alpha1 subunit (which includes loop E), and residues gammaL(119) (close to loop F) and gammaE(176) (close to loop G) at the low-affinity binding site, or deltaL(121) (close to the homologous region of loop G) at the high-affinity binding site, are i  相似文献   

12.
13.
High-affinity blockers for an ion channel often have complex molecular structures that are synthetically challenging and/or laborious. Here we show that high-affinity blockers for the mouse nicotinic acetylcholine receptor (AChR) can be prepared from a structurally simple material, poly(ethylene glycol) (PEG). The PEG-based blockers (PQ1–5), comprised of a flexible octa(ethylene glycol) scaffold and two terminal quaternary ammonium groups, exert low- to sub-micromolar affinities for the open AChR pore (measured via single-channel analysis of AChRs expressed in human embryonic kidney cells). PQ1–5 are comparable in pore-binding affinity to the strongest AChR open-channel blockers previously reported, which have complex molecular structures. These results suggest a general approach for designing potent open-channel blockers from a structurally flexible polymer. This design strategy involves simple synthetic procedures and does not require detailed information about the structure of an ion-channel pore.  相似文献   

14.
The agonist-binding site of nicotinic acetylcholine receptors (nAChRs) spans an interface between two subunits of the pentameric receptor. The principal component of this binding site is contributed by an α subunit, and it binds the cationic moiety of the nicotinic pharmacophore. The other part of the pharmacophore, a hydrogen bond acceptor, has recently been shown to bind to the complementary non-α subunit via the backbone NH of a conserved Leu. This interaction was predicted by studies of ACh-binding proteins and confirmed by functional studies of the neuronal (CNS) nAChR, α4β2. The ACh-binding protein structures further suggested that the hydrogen bond to the backbone NH is mediated by a water molecule and that a second hydrogen bonding interaction occurs between the water molecule and the backbone CO of a conserved Asn, also on the non-α subunit. Here, we provide new insights into the nature of the interactions between the hydrogen bond acceptor of nicotinic agonists and the complementary subunit backbone. We studied both the nAChR of the neuromuscular junction (muscle-type) and a neuronal subtype, (α4)2(β4)3. In the muscle-type receptor, both ACh and nicotine showed a strong interaction with the Leu NH, but the potent nicotine analog epibatidine did not. This interaction was much attenuated in the α4β4 receptor. Surprisingly, we found no evidence for a functionally significant interaction with the backbone carbonyl of the relevant Asn in either receptor with an array of agonists.  相似文献   

15.
Previous studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) alpha subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, we used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind alpha-bungarotoxin (alpha-BTX) and several alpha-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the alpha subunit, and bind to AChR is inhibited by all cholinergic ligands. WF6 competes with agonists, but not with low mol. wt. antagonists, for AChR binding. The synthetic peptides used in this study were approximately 20 residue long, overlapped each other by 4-6 residues, and corresponded to the complete sequence of Torpedo AChR alpha subunit. Also, overlapping peptides, corresponding to the sequence segments of each Torpedo AChR subunit homologous to alpha 166-203, were synthesized. alpha-BTX bound to a peptide containing the sequence alpha 181-200 and also, albeit to a lesser extent, to a peptide containing the sequence alpha 55-74. WF6 bound to alpha 181-200 and to a lesser extent to alpha 55-74 and alpha 134-153. The two other mAbs predominantly bound to alpha 55-74, and to a lesser extent to alpha 181-200. Peptides alpha 181-200 and alpha 55-74 both inhibited binding of 125I-alpha-BTX to native Torpedo AChR. None of the peptides corresponding to sequence segments from other subunits bound alpha-BTX or WF6, or interfered with their binding. Therefore, the cholinergic binding site is not a single narrow sequence region, but rather two or more discontinuous sequence segments within the N-terminal extracellular region of the AChR alpha subunit, folded together in the native structure of the receptor, contribute to form a cholinergic binding region. Such a structural arrangement is similar to the "discontinuous epitopes" observed by X-ray diffraction studies of antibody-antigen complexes [reviewed in Davies et al. (1988)].  相似文献   

16.
Thirteen monoclonal antibodies (mAb) to the acetylcholine receptor (AChR) from Torpedo marmorata showed high avidity for the receptor but none exhibited binding to muscle AChR solubilised from seven other animal species. Five mAb and Fab monomer fragments prepared from two of them, inhibited alpha-bungarotoxin (alpha BuTx) binding to receptor by a maximum of 50%. In the presence of excess mAb the 125I-alpha BuTx bound could be precipitated by anti-IgG indicating that the mAb bound to only one of the two alpha BuTx binding sites on each AChR monomer. This site appeared to have a lower affinity for d-tubocurarine and decamethonium than the non-mAb site. Binding of five anti-site mAb was mutually competitive and four of them (AS2-AS5) were inhibited by other cholinergic ligands and influenced by four non-toxin binding site antibodies. One (AS1) bound within the toxin binding site yet outside the main neurotransmitter binding region. It is concluded that these five mAb distinguish between the two alpha BuTx binding sites on the Torpedo AChR, and bind only to the site which displays lower affinity for d-tubocurarine and other competitive ligands.  相似文献   

17.
A region of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of the Torpedo electric organ, containing residues 161-166, has been proposed to be a major antigenic site in the native AChR protein. We report the synthesis of a peptide corresponding to residues 159-169, which contains the proposed antigenic region. In quantitative radiometric titrations, radiolabelled anti-(native AChR) antibodies from three different species, rabbit, rat and dog, exhibited considerable binding (approx. 15% relative to native AChR) to Sepharose-immobilized peptide 159-169, but did not bind significantly to Sepharose-immobilized unrelated proteins or peptides. Specificity was further confirmed by the finding that no rabbit anti-AChR antibodies bound to the peptide after absorption with native AChR. These data indicate that the region 159-169 contains an antigenic site that is readily accessible in solubilized native Torpedo AChR.  相似文献   

18.
Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site.  相似文献   

19.
Three regions of the alpha chain of Torpedo californica acetylcholine receptor (AChR), corresponding to residues alpha 262-276, alpha 388, 408 and alpha 427-437 were synthesized, purified and characterized. The first two peptides have been proposed to occupy inter-transmembrane regions while the third represented the C-terminal segment, proposed by various models to be either extracellular or intracellular. Peptide alpha 388-408 stimulated a good response in the AChR-primed T cells of H-2s haplotype mice, a low response in the H-2q haplotype and no response in the H-2b haplotype. Peptide alpha 427-437 stimulated AChR-primed T cells of the H-2s haplotype, but caused no response in the q and b haplotypes. Peptide alpha 262-276 evoked no in vitro stimulation in any of the s, q or b haplotypes. In antibody binding studies, peptide alpha 388-408 bound antibodies raised against free AChR or against membrane-bound AChR. The other two peptides showed little or no binding activity. Further, peptide alpha 388-408 bound specifically both 125I-labelled bungarotoxin and cobratoxin, while the other two peptides had no binding activity. These results were consistent with only one of the models for subunit organization within the membrane.  相似文献   

20.
Several porphyrin derivatives were reported to have anti-HIV-1 activity. Among them, meso-teta(4-carboxyphenyl)porphine (MYCPP) and other carboxyphenyl derivatives were the most potent inhibitors (EC50 < 0.7 μM). MTCPP bound to the HIV-1 enveloope glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to HIV-1 envelop glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to regions on gp120 which cannot be mimicked by peptides. Further characterization of the binding domain for MTCPP is important for understanding the antiviral activity of porphyrins and for the design of anit-HIV-1 drugs interfering with functions of the virus envelope. Results presented here show that: (i) deletion of the V3 loop from the gp120 sequence resulted in drastically diminished MTCPP binding, suggesting that the V3 loop is the dominant if not the only target site on gp120; (ii) this site was only partially mimicked by full-length V3 loop peptides; (iii) MTCPP binding to the gp120 V3 loop elicited allosteric effects resulting in decreased accessibility of the CD4 receptor binding site; (iv) the binding site for MTCPP lies within the central portion of the V3 loop (KSIHIGPGRAFY for the HIV-1 subtype B consensus sequence) and does not involve directly the GPG apex of the loop. These results may help in designing antiviral compounds with improved activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号