首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The p53 alterations frequently found in human tumors are missense mutations in the DNA binding domain. These p53 mutations have been shown to have gain-of-function or dominant negative properties in multiple experiments. The consequences of these p53 mutations at physiological levels on the development of a tumor were unclear. Using mouse models, three recent papers have shed light on the mechanisms of mutant p53 and its family members, p63 and p73, in tumorigenesis. Interestingly, the p53 point mutant mice had a similar phenotype to p53 family compound mutant mice suggesting that there is an interplay between the p53 family members in tumorigenesis and Li-Fraumeni syndrome.  相似文献   

2.
The TP53 tumor suppressor gene is mutated in many human tumors, including common types of cancer such as colon and ovarian cancer. This illustrates the key role of p53 as trigger of cell cycle arrest or cell death upon oncogenic stress. Most TP53 mutations are missense mutations that result in single amino acid substitutions in p53 and expression of high levels of dysfunctional p53 protein. Restoration of wild type p53 function in such tumor cells will induce robust cell death and allow efficient eradication of the tumor. Therapeutic targeting of mutant p53 in tumors is a rapidly developing field at the forefront of translational cancer research. Various approaches have led to the identification of small molecules that can rescue mutant p53. These include compounds that target specific p53 mutations, including PK083 and PK5174 (Y220C mutant p53) and NSC319726 (R175H mutant p53), as well as PRIMA-1 and its analog APR-246 that affect a wider range of mutant p53 proteins. APR-246 has been tested in a Phase I/II clinical trial with promising results.  相似文献   

3.
突变体p53研究进展   总被引:4,自引:0,他引:4  
李大虎  张令强  贺福初 《遗传》2008,30(6):697-703
抑癌基因突变是癌症发生过程中一个极为关键的事件。p53作为体内最重要的抑癌基因之一, 在人类癌症中发生突变的频率高达50%。同时, p53突变也是人类遗传病Li-Fraumeni综合征的主要病因。p53最常见的突变形式是错义突变, 所形成的突变体p53不但失去了野生型p53的抑癌功能, 而且还获得了一系列类似于癌基因的功能, 促进了肿瘤的进程。文章拟对突变体p53的结构功能改变, 获得癌基因活性的分子机制, 以及近年来对封闭突变体p53活性所进行的探索等研究方向所取得的进展做一综述。  相似文献   

4.
Individuals with Li-Fraumeni syndrome carry inherited mutations in the p53 tumor suppressor gene and are predisposed to tumor development. To examine the mechanistic nature of these p53 missense mutations, we generated mice harboring a G-to-A substitution at nucleotide 515 of p53 (p53+/515A) corresponding to the p53R175H hot spot mutation in human cancers. Although p53+/515A mice display a similar tumor spectrum and survival curve as p53+/- mice, tumors from p53+/515A mice metastasized with high frequency. Correspondingly, the embryonic fibroblasts from the p53515A/515A mutant mice displayed enhanced cell proliferation, DNA synthesis, and transformation potential. The disruption of p63 and p73 in p53-/- cells increased transformation capacity and reinitiated DNA synthesis to levels observed in p53515A/515A cells. Additionally, p63 and p73 were functionally inactivated in p53515A cells. These results provide in vivo validation for the gain-of-function properties of certain p53 missense mutations and suggest a mechanistic basis for these phenotypes.  相似文献   

5.
Stabilization of the MDM2 oncoprotein by mutant p53   总被引:3,自引:0,他引:3  
MDM2 is a short-lived protein that regulates p53 degradation. We report here that transient coexpression of MDM2 and several p53 hotspot mutants resulted in stabilization and increased expression of MDM2. Ectopic expression of the mutant p53(175H) allele by recombinant adenovirus infection or stable transfection also stabilized endogenous MDM2 in p53-null cells. A panel of human tumor cell lines expressing different endogenous mutant p53 alleles also contained stabilized nuclear MDM2 at elevated levels when compared with p53-null cells. MDM2 was present in complexes with mutant p53 in tumor cells, and stabilization of MDM2 required direct binding to mutant p53. These results reveal a novel property of mutant p53 and a unique feature of tumors with p53 missense mutations. Accumulation of stable MDM2 may contribute to tumorigenesis through its p53-independent transforming functions.  相似文献   

6.
Thirty percent of human breast cancers have amplification of ERBB2, often in conjunction with mutations in p53. The most common p53 mutation in human breast cancers is an Arg-to-His mutation at codon 175, an allele that functions in a dominant oncogenic manner in tumorigenesis assays and is thus distinct from loss of p53. Transgenic mice expressing mouse mammary tumor virus-driven neu transgene (MMTV-neu) develop clonal mammary tumors with a latency of 234 days, suggesting that other events are necessary for tumor development. We have examined the role of mutations in p53 in tumor development in these mice. We have found that 37% of tumors arising in these mice have a missense mutations in p53. We have directly tested for cooperativity between neu and mutant p53 in mammary tumorigenesis by creating bitransgenic mice carrying MMTV-neu and 172Arg-to-His p53 mutant (p53-172H). In these bitransgenic mice, tumor latency is shortened to 154 days, indicating strong cooperativity. None of the nontransgenic mice or the p53-172H transgenic mice developed tumors within this time period. Tumors arising in the p53-172H/neu bitransgenic mice were anaplastic and aneuploid and exhibited increased apoptosis, in distinction to tumors arising in p53-null mice, in which apoptosis is diminished. Further experiments address potential mechanisms of cooperativity between the two transgenes. In these bitransgenic mice, we have recapitulated two common genetic lesions that occur in human breast cancer and have shown that p53 mutation is an important cooperating event in neu-mediated oncogenesis.  相似文献   

7.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome   总被引:13,自引:0,他引:13  
Olive KP  Tuveson DA  Ruhe ZC  Yin B  Willis NA  Bronson RT  Crowley D  Jacks T 《Cell》2004,119(6):847-860
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.  相似文献   

8.
P53 is one of the most important tumor suppressor proteins in human cancers. Mutations in the TP53 gene are common features of malignant tumors and normally correlate to a more aggressive disease. In breast cancer, these gene alterations are present in approximately 20% of cases and are characteristically of missense type. In the present work we describe TP53 mutations in breast cancer biopsies and investigate whether wild and mutant p53 participate in protein aggregates formation in these breast cancer cases. We analyzed 88 biopsies from patients residing in the metropolitan area of Rio de Janeiro, and performed TP53 mutation screening using direct sequencing of exons 5-10. Seventeen mutations were detected, 12 of them were of missense type, 2 nonsenses, 2 deletions and 1 insertion. The presence of TP53 mutation was highly statistically associated to tumor aggressiveness of IDC cases, indicated here by Elston Grade III (p<0.0001). Paraffin embedded breast cancer tissues were analyzed for the presence of p53 aggregates through immunofluorescence co-localization assay, using anti-aggregate primary antibody A11, and anti-p53. Our results show that mutant p53 co-localizes with amyloid-like protein aggregates, depending on mutation type, suggesting that mutant p53 may form aggregates in breast cancer cells, in vivo.  相似文献   

9.
10.
Loss of the tumor suppression activity of p53 is required for the progression of most human cancers. In this context, p53 gene is somatically mutated in about half of all human cancers; in the rest human cancers, p53 is mostly inactivated due to the disruption of pathways important for its activation. Most p53 cancer mutations are missense mutations within the core domain, leading to the expression of full-length mutant p53 protein. The expression of p53 mutants is usually correlated with the poor prognosis of the cancer patients. Accumulating evidence has indicated that p53 cancer mutants not only lose the tumor suppression activity of WT p53, but also gain novel oncogenic activities to promote tumorigenesis and drug resistance. Therefore, to improve current cancer therapy, it is critical to elucidate the gain-of-functions of p53 cancer mutants. By analyzing the humanized p53 mutant knock-in mouse models, we have identified a new gain of function of the common p53 cancer mutants in inducing genetic instability by disrupting ATM-mediated cellular responses to DNA double-stranded break (DSB) damage. Considering that some current cancer therapies such as radiotherapy kills the cancer cells by inducing DSBs in their genome DNA, our findings will have important implications on the treatment of human cancers that express common p53 mutants.  相似文献   

11.
12.
13.
Transforming activity of mutant human p53 alleles   总被引:6,自引:0,他引:6  
Mutant forms of the p53 gene have been shown to cooperate with an activated ras gene in transforming primary cells in culture. The aberrant proteins encoded by p53 mutants are thought to act in a dominant negative manner in these assays. In vivo data, however, reveal that where p53 has undergone genetic change in tumors, both alleles have been affected. We previously identified a case of human acute myelogenous leukemia (AML) in which both alleles of the p53 gene had undergone independent missense mutations (at codons 135 cys to ser and 246 met to val). In these blasts, p53 mutations appear to be acting recessively. We have assayed the transforming potential of these p53 mutations, as well as that of another mutation at codon 273, also identified in a human neoplasm. Both mutations from the AML blasts (codon 135 and codon 246) confer transforming ability on the mutant protein. While transformation assays may define functionally different subsets of p53 mutations, the overexpression phenotype of mutants in this assay may not accurately reflect the pathological effects of p53 mutations in vivo.  相似文献   

14.
p53 mutation heterogeneity in cancer   总被引:13,自引:0,他引:13  
The p53 gene is inactivated in about 50% of human cancers and the p53 protein is an essential component of the cell response induced by genotoxic stresses such as those generated by radiotherapy or chemotherapy. It is therefore highly likely that these alterations are an important component in tumor resistance to therapy. The particular characteristics of these alterations, 80% of which are missense mutations leading to functionally heterogeneous proteins, make p53 a unique gene in the class of tumor suppressor genes. A considerable number of mutant p53 proteins probably have an oncogenic activity per se and therefore actively participate in cell transformation. The fact that the apoptotic and antiproliferative functions of p53 can be dissociated in certain mutants also suggests another level of complexity in the relationships between p53 inactivation and neoplasia.  相似文献   

15.
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.  相似文献   

16.
17.
Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.  相似文献   

18.
19.
The tumor suppressor protein p53 loses its function in more than 50% of human malignant tumors. Recent studies have suggested that mutant p53 can form aggregates that are related to loss-of-function effects, negative dominance and gain-of-function effects and cancers with a worsened prognosis. In recent years, several degenerative diseases have been shown to have prion-like properties similar to mammalian prion proteins (PrPs). However, whereas prion diseases are rare, the incidence of these neurodegenerative pathologies is high. Malignant tumors involving mutated forms of the tumor suppressor p53 protein seem to have similar substrata. The aggregation of the entire p53 protein and three functional domains of p53 into amyloid oligomers and fibrils has been demonstrated. Amyloid aggregates of mutant p53 have been detected in breast cancer and malignant skin tumors. Most p53 mutations related to cancer development are found in the DNA-binding domain (p53C), which has been experimentally shown to form amyloid oligomers and fibrils. Several computation programs have corroborated the predicted propensity of p53C to form aggregates, and some of these programs suggest that p53C is more likely to form aggregates than the globular domain of PrP. Overall, studies imply that mutant p53 exerts a dominant-negative regulatory effect on wild-type (WT) p53 and exerts gain-of-function effects when co-aggregating with other proteins such as p63, p73 and acetyltransferase p300. We review here the prion-like behavior of oncogenic p53 mutants that provides an explanation for their dominant-negative and gain-of-function properties and for the high metastatic potential of cancers bearing p53 mutations. The inhibition of the aggregation of p53 into oligomeric and fibrillar amyloids appears to be a promising target for therapeutic intervention in malignant tumor diseases.  相似文献   

20.
Human tumor cells have properties in vitro or in surrogate hosts that are distinct from those of normal cells, such as immortality, anchorage independence, and tumor formation in nude mice. However, different cells from individual tumors may exhibit some, but not all of these features. In previous years, human tumor cell lines derived from different tumor and tissue types have been studied to determine those molecular changes that are associated with the in vitro properties listed above and with tumorigenicity in nude mice. In the present study, seven cell lines derived from human tumors were characterized for p53 and ras mutations that may occur in SCC tumor phenotypes and for tumor formation in nude mice. This investigation was designed to examine whether co-occurrence of mutated ras and p53 lead to a malignant stage in the progression process. None of the seven cell lines contained mutations in the recognized "hot spots" of the p53 tumor suppressor gene, but four had a nonsense/splice mutation in codon 126 and a mutation in codon 12 of the H-ras gene. The remaining three cell lines had p53 mutations in intron 5, in codon 193, and a missense mutation in codon 126, respectively. Four of seven cell lines were nontumorigenic; two of these cell lines contained a nonsense p53-126 mutation and mutated ras; one had a missense mutation at codon 126 but no mutated ras; the the fourth had only a p53 mutation at codon 193. Two of the nontumorigenic cell lines were converted to tumorigenicity after treatment with methyl methanesulfonate or N-methyl-N-nitro-N-nitrosoguanidine with no apparent additional mutations in either gene. Our analysis revealed that there was a high frequency of genetic diversity and mutations in both p53 and H-ras. There was also a lack of a causal relationship in the presence of mutations in p53 and the cells ability to exhibit a malignant potential in nude mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号