首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two apparently homologous proteins, designated CIF-A and CIF-B, were previously isolated from bovine bone on the basis of their cartilage-inducing activity in culture. CIF-A has been shown to probably be identical to transforming growth factor beta (TGF-beta). To address the question of tissue localization, antibodies to CIF-A were produced using a synthetic polypeptide identical to N-terminal residues 1-30. The antibodies were immunoreactive with bovine CIF-A and human TGF-beta, did not recognize CIF-B, and did not recognize other molecular weight species in crude bovine bone extracts. The antibodies were used to immunohistochemically localize CIF-A/TGF-beta in fetal bovine bone and other tissues. There was abundant staining of osteocytes throughout cancellous and cortical bone as well as chondrocytes within the articular cartilage, although growth plate-associated chondrocytes were not labeled. In addition, immunoreactive cells were detected in bone marrow (megakaryocytes and some mononuclear cells), fetal liver (hematopoietic stems cells), and the thymus (Hassall's corpuscle and some medullary thymocytes). In the kidney, the antibodies labeled a population of epithelial cells lining the calyces. Tissues which did not have detectable amounts of CIF-A/TGF-beta included the thyroid, adrenal, salivary gland, and aorta. Results presented here suggest that the factor may function in vivo as a general development and repair factor and may play a significant role in the differentiation of many cell types including chondrocytes, osteocytes, T-lymphocytes, and red blood cells.  相似文献   

2.
Cartilage-inducing factors-A (CIF-A) and -B (CIF-B), purified from bovine bone on the basis of their ability to induce the cartilage phenotype in vitro, are proteins with molecular weights of 26,000 composed of two apparently identical disulfide-linked chains. CIF-A is apparently identical to TGF-beta from human platelets (Seyedin S. M., Thompson, A. Y., Bentz, H., Rosen, D. M., McPherson, J. M., Conti, A., Siegel, N. R., Galluppi, G. R., and Piez, K. A. (1986) J. Biol. Chem. 261, 5693-5695). We have now found that, like CIF-A and TGF-beta, CIF-B induces anchorage-independent proliferation of NRK-49F cells when these cells are simultaneously treated with epidermal growth factor. Furthermore, CIF-B competes with CIF-A for the same cell membrane receptors in NRK-49F cells. Partial amino acid sequencing reveals that CIF-B is a distinct molecule with extensive homology to CIF-A/TGF-beta. These results show that CIF-B and TGF-beta are structurally and functionally similar molecules, but differ more from each other than does TGF-beta from different species.  相似文献   

3.
Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dose dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes, suggesting that full osteoclastic differentiation was not achieved. These results emphasize the complex role of TGF-beta in the local regulation of bone cell differentiation and in bone remodeling.  相似文献   

4.
Cartilage-inducing factors A and B (CIF-A and CIF-B) from bovine bone have recently been identified as transforming growth factor-beta (TGF-beta) (Seyedin, S.M., Thompson, A. Y., Bentz, H., Rosen, D. M., McPherson, J. M., Conti, A., Siegel, N. R., Galluppi, G. R., and Piez, K. A. (1986) J. Biol. Chem., 261, 5693-5695) and a unique protein homologous to TGF-beta (Seyedin S. M., Segarini, P. R., Rosen, D. M., Thompson, A. Y., Bentz, H., and Graycar, J. (1987) J. Biol. Chem., 262, 1946-1949), respectively. Although the biological activities of TGF-beta and CIF-B are similar, the divergence of CIF-B from the highly conserved amino acid sequence of TGF-beta prompted an investigation of its receptor binding properties. Three classes of cell surface binding components were identified. Class A has exclusive affinity for TGF-beta; class B has greater affinity for CIF-B; and class C has equal affinity for both proteins. A high molecular weight component, the predominant binding species, was further characterized and shown to consist of two components that are either class B or class C. The differential binding properties of TGF-beta and CIF-B to cell surface components suggest that there are biological activities unique to each of the proteins.  相似文献   

5.
We have recently demonstrated that transforming growth factor (TGF)-beta 1 and TGF-beta 2 are potent inhibitors of the growth and differentiation of murine and human hematopoietic cells. The proliferation of primary unfractionated murine bone marrow by interleukin-3 (IL-3) and human bone marrow by IL-3 or granulocyte/macrophage colony-stimulating factor (GM-CSF) was inhibited by TGF-beta 1 and TGF-beta 2, while the proliferation of murine bone marrow by GM-CSF or murine and human marrow with G-CSF was not inhibited. Mouse and human hematopoietic colony formation was differentially affected by TGF-beta 1. In particular, CFU-GM, CFU-GEMM, BFU-E, and HPP-CFC, the most immature colonies, were inhibited by TGF-beta 1, whereas the more differentiated unipotent CFU-G, CFU-M, and CFU-E were not affected. TGF-beta 1 inhibited IL-3-induced growth of murine leukemic cell lines within 24 h, after which the cells were still viable. Subsequent removal of the TGF-beta 1 results in the resumption of normal growth. TGF-beta 1 inhibited the growth of factor-dependent NFS-60 cells in a dose-dependent manner in response to IL-3, GM-CSF, G-CSF, CSF-1, IL-4, or IL-6. TGF-beta 1 inhibited the growth of a variety of murine and human myeloid leukemias, while erythroid and macrophage leukemias were insensitive. Lymphoid leukemias, whose normal cellular counterparts were markedly inhibited by TGF-beta, were also resistant to TGF-beta 1 inhibition. These leukemic cells have no detectable TGF-beta 1 receptors on their cell surface. Last, TGF-beta 1 directly inhibited the growth of isolated Thy-1-positive progenitor cells. Thus, TGF-beta may be an important modulator of normal and leukemic hematopoietic cell growth.  相似文献   

6.
We have investigated the ability of exogenous transforming growth factor-beta (TGF-beta) to induce osteogenesis and chondrogenesis, critical events in both bone formation and fracture healing. Daily injections of TGF-beta 1 or 2 into the subperiosteal region of newborn rat femurs resulted in localized intramembranous bone formation and chondrogenesis. After cessation of the injections, endochondral ossification occurred, resulting in replacement of cartilage with bone. Gene expression of type II collagen and immunolocalization of types I and II collagen were detected within the TGF-beta-induced cartilage and bone. Moreover, injection of TGF-beta 2 stimulated synthesis of TGF-beta 1 in chondrocytes and osteoblasts within the newly induced bone and cartilage, suggesting positive autoregulation of TGF-beta. TGF-beta 2 was more active in vivo than TGF-beta 1, stimulating formation of a mass that was on the average 375% larger at a comparable dose (p less than 0.001). With either TGF-beta isoform, the dose of the growth factor determined which type of tissue formed, so that the ratio of cartilage formation to intramembranous bone formation decreased as the dose was lowered. For TGF-beta 1, reducing the daily dose from 200 to 20 ng decreased the cartilage/intramembranous bone formation ratio from 3.57 to zero (p less than 0.001). With TGF-beta 2, the same dose change decreased the ratio from 3.71 to 0.28 (p less than 0.001). These data demonstrate that mesenchymal precursor cells in the periosteum are stimulated by TGF-beta to proliferate and differentiate, as occurs in embryologic bone formation and early fracture healing.  相似文献   

7.
Bone morphogenetic protein 2B (BMP-2B) also called BMP-4 is one of a family of cartilage and bone-inductive proteins derived from bone matrix and belongs to the transforming growth factor beta (TGF-beta) superfamily. These bone-inductive proteins isolated from adult bone may be involved in bone repair. However, they may also play a role in cartilage and bone formation during embryonic development. To test whether BMP-2B influences cartilage formation by embryonic cells, recombinant human BMP-2B was applied to cultured limb bud mesoderm plated at three different densities. BMP-2B stimulated cartilage formation as assessed by Alcian blue staining and incorporation of radioactive sulfate into sulfated proteoglycans. Cells cultured at all three densities in the presence of 10 ng/ml BMP-2B formed a nearly continuous sheet of cartilage with abundant extracellular matrix and type II collagen. In addition, when cells were cultured in 0.5% serum in the presence of 10 ng/ml of BMP-2B for 5 days there was an increase in alkaline phosphatase as detected by histochemical and biochemical methods. Transforming growth factor beta isoforms (TGF-beta 1 and TGF-beta 2) inhibited sulfate incorporation into proteoglycans in a dose-dependent manner. This inhibition by TGF beta was overcome by recombinant BMP-2B. This study demonstrates that recombinant BMP-2B stimulates cartilage formation by chick limb bud mesoderm in vitro and is further modulated by TGF-beta isoforms.  相似文献   

8.
Type beta transforming growth factor (TGF-beta) is found in large amounts in bone tissue, and is a potent mitogen for osteoblast-enriched cell cultures obtained from fetal rat parietal bone. Because other local and systemic factors may be presented to bone cells simultaneously with TGF-beta, it is important to understand the effects of this complex growth regulator in such circumstances. Unlike the effects observed in many tissue systems, TGF-beta does not invariably inhibit the mitogenic response of bone cells to other growth promoters. In contrast, other factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and type alpha tumor necrosis factor (TNF-alpha) limit the response of osteoblastic bone cells to TGF-beta. TGF-beta is a much weaker mitogen for fibroblastic cells obtained from fetal rat bone, whereas fetal bovine serum, EGF, bFGF, and TNF-alpha are more potent stimulators. In addition, TGF-beta does not significantly impair the response of the fibroblastic bone cells to the other tested agents. These findings reinforce a role of TGF-beta as an anabolic bone growth regulator, and suggest that its function may be modified by other local or systemic agents that can also affect bone cells.  相似文献   

9.
Transforming growth factor beta-1 (TGF-beta1) is released from the extracellular matrix of rat growth plate chondrocytes and activated by stromelysin-1 (matrix metalloproteinase 3, MMP-3), an enzyme that is stored in matrix vesicles. MMP-3 is released from these extracellular organelles by the direct action of 1alpha,25(OH)2D3 via activation of phospholipase A2 (PLA2), resulting in local production of lysophospholipids and matrix vesicle membrane destabilization. This effect of 1alpha,25(OH)2D3 is greater in matrix vesicles from growth zone chondrocyte cultures and PLA2 activity is higher in the growth zone in vivo, suggesting that it may depend on chondrocyte maturation state in the endochondral lineage. Previous studies have shown that latent TGF-beta1 can be activated by mild detergents in vitro, suggesting that lysophospholipids may act in vivo in a similar manner. To test this hypothesis, we determined if rat costochondral growth plate cartilage cells produce lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) in a maturation state-dependent manner and if LPC or LPE could release and activate latent TGF-beta1 from the extracellular matrix produced by these cells. Rat growth plate chondrocytes produced both lysophospholipids, with growth zone cells producing higher levels of LPE via PLA1, and resting zone cells producing higher levels of LPC via PLA2. LPC and LPE directly increased activation of recombinant human latent TGF-beta1 in a biphasic manner with a peak at 2 microg/ml. Phosphatidylcholine, phosphatidylethanolamine, and LPE plasmalogen (LPEP), but not choline, also activated TGF-beta1. Latent TGF-beta1 incubated with LPC or LPE, but neither lysophospholipid alone, stimulated [3H]-thymidine incorporation of resting zone cells, indicating the TGF-beta1 released was biologically active. LPC and LPE also released TGF-beta1 in a dose- and time-dependent manner when incubated with cell-free extracellular matrices produced by the cells. These results indicate that LPC and LPE have important roles as regulators of rat growth plate chondrocytes by directly and indirectly activating TGF-beta1 stored in the extracellular matrix.  相似文献   

10.
We reported previously that a 32-36-kDa osteogenic protein purified from bovine bone matrix is composed of dimers of two members of the transforming growth factor (TGF)-beta superfamily: the bovine equivalent of human osteogenic protein-1 (OP-1) and bone morphogenetic protein-2a, BMP-2a (BMP-2). In the present study, we produced the recombinant human OP-1 (hOP-1) in mammalian cells as a processed mature disulfide-linked homodimer with an apparent molecular weight of 36,000. Examination of hOP-1 in the rat subcutaneous bone induction model demonstrated that hOP-1 was capable of inducing new bone formation with a specific activity comparable with that exhibited by highly purified bovine osteogenic protein preparations. The half-maximal bone-inducing activity of hOP-1 in combination with a rat collagen matrix preparation was 50-100 ng/25 mg of matrix as determined by the calcium content of day 12 implants. Evaluation of hOP-1 effects on cell growth and collagen synthesis in rat osteoblast-enriched bone cell cultures showed that both cell proliferation and collagen synthesis were stimulated in a dose-dependent manner and increased 3-fold in response to 40 ng of hOP-1/ml. Examination of the expression of markers characteristic of the osteoblast phenotype showed that hOP-1 specifically stimulated the induction of alkaline phosphatase (4-fold increase at 40 ng of hOP-1/ml), parathyroid hormone-mediated intracellular cAMP production (4-fold increase at 40 ng of hOP-1/ml), and osteocalcin synthesis (5-fold increase at 25 ng of hOP-1/ml). In long-term (11-17 day) cultures of osteoblasts in the presence of beta-glycerophosphate and L(+)-ascorbate, hOP-1 markedly increased the rate of mineralization as measured by the number of mineral nodules per well (20-fold increase at 20 ng of hOP-1/ml). Direct comparison of TGF-beta 1 and hOP-1 in these bone cell cultures indicated that, although both hOP-1 and TGF-beta 1 promoted cell proliferation and collagen synthesis, only hOP-1 was effective in specifically stimulating markers of the osteoblast phenotype.  相似文献   

11.
An important consideration in interpreting indices of gene expression in human bone is relating mRNA levels to functional endpoints such as bone architecture. In the present study, a method was developed for quantitative measurement of gene expression and bone morphology in the same specimen. Three-dimensional images of iliac crest bone biopsies from healthy premenopausal women were obtained using a novel high resolution cryogenic mu-CT scanner. RNA was isolated from the biopsies and mRNA levels were measured for genes related to bone metabolism. The gene expression profile and variability of expression within iliac crest biopsies of women was similar to human osteoblastic cell lines and rat long bones. mRNA for alkaline phosphatase, bone matrix proteins, and selected cytokines and cytokine receptors were consistently detected in biopsies. As previously shown in rat bone, there was a tight correlation between mRNA levels for type 1 collagen and osteonectin, a weaker correlation between type 1 collagen and osteocalcin and no correlation between bone matrix proteins and alkaline phosphatase. The relative abundance of the mRNA for the three most prevalent transforming growth factor-beta (TGF-beta) isoforms in bone (TGF-beta(1)> TGF-beta(3)> TGF-beta(2)) was the same as the known abundance of the corresponding TGF-beta peptides in bone matrix. The results demonstrate the feasibility of analyzing the three-dimensional architecture of a bone biopsy using cryogenic mu-CT imaging and then measuring expression of genes related to bone cell function within the same specimen following RNA extraction and analysis.  相似文献   

12.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  相似文献   

13.
The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of [3H]thymidine incorporation. The decrease of [3H]thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions (1.8 mM Ca2+, differentiation-promoting culture environment) was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions. Thus, the effect of TGF-beta on keratinocyte differentiation is Ca2+ dependent. It enhances differentiation of human keratinocytes under high Ca2+ conditions, but inhibits differentiation under low Ca2+ conditions. Taken together, there is a clear discrepancy between TGF-beta effects on growth inhibition and induction of differentiation in human keratinocytes. These data indicate that growth inhibition of human keratinocytes by TGF-beta is direct and not induced by differentiation.  相似文献   

14.
The bone morphogenetic and osteogenic proteins (BMPs/OPs), pleiotropic members of the transforming growth factor-beta (TGF-beta) supergene family act as soluble signals for the de novo initiation of bone formation, sculpting the multicellular mineralized structures of the bone-bone marrow organ. The strikingly pleiotropic effects of BMPs/OPs spring from amino acid sequence variations in the carboxy-terminal domain and in the transduction of distinct signalling pathways by individual Smad proteins after transmembrane serine/threonine kinase complexes of type I and II receptors. BMPs/OPs are the common molecular initiators deployed for embryonic development and the induction of bone formation and regeneration in postnatal osteogenesis. Naturally derived BMPs/OPs extracted and purified from baboon and bovine bone matrices induce complete regeneration of non-healing calvarial defects in the non-human primate Papio ursinus as well as the induction of cementogenesis and the morphogenesis of a periodontal ligament system with a faithful insertion of Sharpey's fibers into the newly formed cementum. gamma-Irradiated recombinant human osteogenic protein-1 (hOP-1) delivered by xenogeneic bovine collagenous bone matrices completely regenerated and maintained the architecture of the induced bone after treatment of calvarial defects with single applications of doses of 0.1, 0.5 and 2.5mg hOP-1 per gram of carrier matrix. The long-term implantation of hOP-1 delivered by gamma-irradiated bovine bone matrices induced the regeneration of the three essential components of the periodontium, i.e. cementum, periodontal ligament and alveolar bone. The osteogenic proteins of the TGF-beta superfamily are sculpting tissue constructs that engineer skeletal tissue regeneration in molecular terms. The pleiotropy of the signalling molecules of the TGF-beta superfamily is highlighted by the redundancy of molecular signals initiating bone formation, including the TGF-beta isoforms per se, powerful inducers of endochondral bone formation but in the primate only. The induction of bone develops a mosaic structure in which members of the TGF-beta superfamily singly, synergistically and synchronously initiate and maintain tissue induction and morphogenesis.  相似文献   

15.
Folic acid deficiency during conception up to the end of the third month of gestation is believed to play the most important factor in neural tube defects (NTDs). However, the exact molecular mechanism remains to be elucidated. It has been suggested that transforming growth factor-beta (TGF-beta1) and insulin-like growth factor-1 (IGF-1) play a critical role in supporting bone formation. Therefore, folic acid deficiency may contribute to NTD occurrence via decreased TGF-beta1 and IGF-1 expression. This study aimed to determine the correlation between folic acid deficiency and the expression of TGF-beta1 and IGF-1 in rat skull bone. Thirty female Sprague-Dawley rats were divided into three groups. Purified diet containing 5 (restricted), 15 (low) and 30 microg (normal) of folic acid was given to the first, second and third groups, respectively. At 16 weeks of a given diet, blood samples were taken to examine folic acid (folate immunoassay method), TGF-beta1 and IGF-1 (enzyme-linked immunosorbent assay method) levels. After forced mating, on the 18th-19th day of gestation (E18-19), the pregnant rats were subjected to hysterectomy. The skull bone samples of E18-19 rats were taken to examine the TGF-beta1 and IGF-1 protein expression by immunohistochemistry. The folic acid-restricted diet (5 microg) resulted in decreased serum TGF-beta1 and IGF-1 levels. Furthermore, protein expression of TGF-beta1 and IGF-1 in E18-19 rat skull bones was also significantly lower in the folic acid-restricted diet than in the normal diet. Folic acid deficiency could result in reduction of TGF-beta1 and IGF-1 protein levels and might contribute to formation of defects in the skull bone as observed in mengingocele patients.  相似文献   

16.
17.
Full-length cDNAs for the transforming growth factor-beta (TGF-beta) type III receptors were isolated from porcine uterus and human placenta cDNA libraries. The human TGF-beta type III receptor coding region encodes a protein of 849 amino acids with a single transmembrane domain and a short stretch of the intracellular domain. Potential glycosaminoglycan attachment sites were found in the extracellular domain. The overall amino acid sequence identities with those of the porcine and rat TGF-beta type III receptors were 83% and 81%, respectively. A high degree of sequence conservation was observed in the transmembrane and intracellular domains, which also have sequence similarity with human endoglin. In addition, two portions with 29 and 52 amino acids in the extracellular domain were found to be substantially similar with human endoglin.  相似文献   

18.
Bone morphogenetic and osteogenic proteins (BMPs/OPs), members of the transforming growth factor-beta (TGF-beta) superfamily, are soluble mediators of tissue morphogenesis and induce de novo endochondral bone formation in heterotopic extraskeletal sites as a recapitulation of embryonic development. In the primate Papio ursinus, the induction of bone formation has been extended to the TGF-beta isoforms per se. In the primate and in the primate only, the TGF-beta isoforms are initiators of endochondral bone formation by induction and act in a species-, site- and tissue-specific mode with robust endochondral bone induction in heterotopic sites but with limited new bone formation in orthotopic bone defects. The limited inductive capacity orthotopically of TGF-beta isoforms is associated with expression of the inhibitory Smads, Smad6 and Smad7. In primates, bone formation can also be induced using biomimetic crystalline hydroxyapatite matrices with a specific surface geometry and without the exogenous application of osteogenic proteins of the TGF-beta superfamily, even when the biomimetic matrices are implanted heterotopically in the rectus abdominis muscle. The sequence of events that directs new bone formation upon the implantation of highly crystalline biomimetic matrices initiates with vascular invasion, mesenchymal cell migration, attachment and differentiation of osteoblast-like cells attached to the substratum, expression and synthesis of osteogenic proteins of the TGF-beta superfamily resulting in the induction of bone as a secondary response. The above findings in the primate indicate enormous potential for the bioengineering industry. Of particular interest is that biomimetic matrices with intrinsic osteoinductivity would be an affordable option in the local context.  相似文献   

19.
We have previously hypothesized that the osteopenic changes seen in the skeletons of old male BALB/c mice are due to reductions in the availability and/or synthesis of bone TGF-beta which results in fewer, less osteogenic marrow osteoprogenitor cells (CFU-f; OPCs) and lower levels of bone formation. Among other things, this hypothesis would predict that introducing exogenous TGF-beta into old mice (growth factor replacement) should stimulate marrow CFU-f and increase bone formation. In the present study, we have tested this prediction and, indirectly the hypothesis, by injecting human recombinant TGF-beta1, i.p., into both young adult (4 month) and old mice (24 month). The effects of the growth factor on the skeleton were then assessed by measurements of trabecular bone volume, bone formation, fracture healing, and the number, proliferative, apoptotic, and alkaline phosphatase activity of marrow CFU-f/OPCs. Our data show that the introduction of 0.5 or 5.0 ug/day of TGF-beta1 into old mice for 20 days 1) increases trabecular bone volume, bone formation and the mineral apposition rate, 2) augments fracture healing, 3) increases the number and size of CFU-f colonies, and 4) increases proliferation and diminishes apoptosis of CFU-f in primary bone marrow cultures. Importantly, these stimulatory effects of injected growth factor are apparently age-specific, i.e., they are either not seen in young animals or, if seen, are found at much lower levels. While these observations do not exclude other possible mechanisms for the osteopenia of old mice, they provide further support for the hypothesis that, with age, diminished TGF-beta synthesis or availability results in a reduction in the marrow osteoprogenitor pool and bone formation. The findings also demonstrate that the latter changes can be reversed, at least transiently, by introducing exogenous TGF-beta1.  相似文献   

20.
One of the primary points of regulation of transforming growth factor-beta (TGF-beta) activity is control of its conversion from the latent precursor to the biologically active form. We have identified thrombospondin-1 as a major physiological regulator of latent TGF-beta activation. Activation is dependent on the interaction of a specific sequence in thrombospondin-1 (K412RFK415) with the latent TGF-beta complex. Platelet thrombospon-din-1 has TGF-beta activity and immunoreactive mature TGF-beta associated with it. We now report that the latency-associated peptide (LAP) of the latent TGF-beta complex also interacts with thrombospondin-1 as part of a biologically active complex. Thrombospondin.LAP complex formation involves the activation sequence of thrombospondin-1 (KRFK) and a sequence (LSKL) near the amino terminus of LAP that is conserved in TGF-beta1-5. The interactions of LAP with thrombospondin-1 through the LSKL and KRFK sequences are important for thrombospondin-mediated activation of latent TGF-beta since LSKL peptides can competitively inhibit latent TGF-beta activation by thrombospondin or KRFK-containing peptides. In addition, the association of LAP with thrombospondin-1 may function to prevent the re-formation of an inactive LAP.TGF-beta complex since thrombospondin-bound LAP no longer confers latency on active TGF-beta. The mechanism of TGF-beta activation by thrombospondin-1 appears to be conserved among TGF-beta isoforms as latent TGF-beta2 can also be activated by thrombospondin-1 or KRFK peptides in a manner that is sensitive to inhibition by LSKL peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号