首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ITAM-coupled receptors play an essential role in regulating macrophage activation and function by cross-regulating signaling from heterologous receptors. We investigated mechanisms by which ITAM-associated receptors inhibit type I IFN (IFN-α/β) signaling in primary human macrophages and tested the effects of simultaneous ligation of ITAM-associated receptors and TLR4 on TLR4-induced Jak-STAT signaling that is mediated by autocrine IFN-β. Preligation of ITAM-coupled β2 integrins and FcγRs inhibited proximal signaling by the type I IFN receptor IFNAR. Cross-inhibition of IFNAR signaling by β2 integrins resulted in decreased Jak1 activation and was mediated by partial downregulation of the IFNAR1 subunit and MAPK-dependent induction of USP18, which blocks the association of Jak1 with IFNAR2. Simultaneous engagement of ITAM-coupled β2 integrins or Dectin-1 with TLR4 did not affect TLR4-induced direct activation of inflammatory target genes such as TNF or IL6 but abrogated subsequent induction of IFN response genes that is mediated by autocrine IFN-β signaling. Type I IFNs promote macrophage death postinfection by Listeria monocytogenes. Consequently, attenuation of IFN responses by β2 integrins protected primary human macrophages from L. monocytogenes-induced apoptosis. These results provide a mechanism for cross-inhibition of type I IFN signaling by ITAM-coupled β2 integrins and demonstrate that ITAM signaling qualitatively modulates macrophage responses to pathogen-associated molecular patterns and pathogens by selectively suppressing IFN responses.  相似文献   

2.
3.
The antiviral and antiproliferative activities of human type I interferons (IFNs) are mediated by two transmembrane receptor subunits, IFNAR1 and IFNAR2. To elucidate the role of IFNAR1 in IFN binding and the establishment of biological activity, specific residues of IFNAR1 were mutated. Residues (62)FSSLKLNVY(70) of the S5-S6 loop of the N-terminal subdomain of IFNAR1 and tryptophan-129 of the second subdomain of IFNAR1 were shown to be crucial for IFN-alpha binding and signaling and establishment of biological activity. Mutagenesis of peptide (278)LRV in the third subdomain shows that these residues are critical for IFN-alpha-induced biological activity but not for ligand binding. These data, together with the sequence homology of IFNAR1 with cytokine receptors of known structure and the recently resolved NMR structure of IFNAR2, led to the establishment of a three-dimensional model of the human IFN-alpha/IFNAR1/IFNAR2 complex. This model predicts that following binding of IFN to IFNAR1 and IFNAR2 the receptor complex assumes a "closed form", in which the N-terminal domain of IFNAR1 acts as a lid, resulting in the activation of intracellular kinases. Differences in the primary sequence of individual IFN-alpha subtypes and resulting differences in binding affinity, duration of ligand/receptor association, or both would explain differences in intracellular signal intensities and biological activity observed for individual IFN-alpha subtypes.  相似文献   

4.
Type I Interferons (IFNs) are important cytokines for innate immunity against viruses and cancer. Sixteen human type I IFN variants signal through the same cell-surface receptors, IFNAR1 and IFNAR2, yet they can evoke markedly different physiological effects. The crystal structures of two human type I IFN ternary signaling complexes containing IFNα2 and IFNω reveal recognition modes and heterotrimeric architectures that are unique among the cytokine receptor superfamily but conserved between different type I IFNs. Receptor-ligand cross-reactivity is enabled by conserved receptor-ligand "anchor points" interspersed among ligand-specific interactions that "tune" the relative IFN-binding affinities, in an apparent extracellular "ligand proofreading" mechanism that modulates biological activity. Functional differences between IFNs are linked to their respective receptor recognition chemistries, in concert with a ligand-induced conformational change in IFNAR1, that collectively control signal initiation and complex stability, ultimately regulating differential STAT phosphorylation profiles, receptor internalization rates, and downstream gene expression patterns.  相似文献   

5.
Human type I interferons (IFN) require two receptor chains, IFNAR1 and IFNAR2c for high affinity (pM) binding and biological activity. Our previous studies have shown that the ligand dependent assembly of the type I IFN receptor chains is not identical for all type I IFNs. IFNbeta appears unique in its ability to assemble a stable complex of receptor chains, as demonstrated by the observation that IFNAR2c co-immunoprecipitates with IFNAR1 when cells are stimulated with IFNbeta but not with IFNalpha. The characteristics of such a receptor complex are not well defined nor is it understood if differential signaling events can be mediated by variations in receptor assembly. To further characterize the factors required for formation of such a stable receptor complex we demonstrate using IFN stimulated Daudi cells that (1) IFNAR2c co-immunoprecipitates with IFNAR1 even when tyrosine phosphorylation of receptor chains is blocked with staurosporine, and (2) IFNbeta1b but not IFNalpha2, is present in the immunoprecipitated receptor complex. These results demonstrate that the unique IFNbeta induced assembly of type I IFN receptor chains is independent of receptor tyrosine phosphorylation and the recruitment of additional proteins to the receptor by such events. Furthermore, the presence of IFNbeta1b in the immunoprecipitated IFN receptor complex suggests that IFNbeta interacts and binds differently to the receptor than IFNalpha2. These results suggest that the specific assembly of type I IFN receptor chains is ligand dependent and may represent an early event which leads to the differential biological responses observed among type I IFNs.  相似文献   

6.
7.
HuangFu WC  Liu J  Harty RN  Fuchs SY 《FEBS letters》2008,582(21-22):3206-3210
While negative effect of smoking on the resistance to viral infections was known, the underlying mechanisms remained unclear. Here we report that products of cigarette smoking compromise the cellular anti-viral defenses by inhibiting the signaling induced by Type I interferon (IFN). Cigarette smoking condensate (but not pure nicotine) stimulated specific serine phosphorylation-dependent ubiquitination and degradation of the IFNAR1 subunit of the Type I IFN receptor leading to attenuation of IFN signaling and decreased resistance to viral infection. This resistance was restored in cells where phosphorylation-dependent degradation of IFNAR1 is abolished. We conclude that smoking compromises cellular anti-viral defenses via degradation of Type I IFN receptor and discuss the significance of this mechanism for efficacy of IFN-based therapies.  相似文献   

8.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

9.
10.
Mammalian interferon (IFN) regulatory factor 9 (IRF-9) has long been recognized as the DNA sequence recognition subunit of IFN-stimulated gene factor 3 (ISGF3) complex, which is critical for type I IFN to induce the expression of IFN-stimulated genes (ISGs) against viral infection. Recent studies have shown that fish IFN exerts antiviral effects by induction of a number of ISGs and also of itself; however, little is known about the role of fish IRF9 in IFN signaling. Here we identify a fish IRF9 orthologue (CaIRF9) from IFN-producing cell line, crucian carp Carassius auratus blastulae embryonic (CAB) cells. Analysis of subcellular distribution of CaIRF9-green fluorescent protein indicates that CaIRF9 is constitutively present in the nucleus, which is driven by two nuclear localization signals (NLS), one locating within DNA-binding domain (DBD) of CaIRF9 and the other immediately behind DBD, although human IRF9 contains only one NLS analogous to the former of CaIRF9. Overexpression of CaIRF9 together with CaSTAT2 not only activates ISRE-containing promoter but also upregulates the expression of fish ISGs. Strikingly, CaIRF9 together with CaSTAT2 also exhibits an ability to activate crucian carp IFN promoter, and blockade of cellular CaIRF9 attenuates IFN itself-induced activation of crucian carp IFN promoter. Taken together, these data suggest that crucian carp IFN induces the expression of ISGs and also of itself possibly by the JAK-STAT signaling pathway that is conserved from fish to mammals.  相似文献   

11.
Phosphorylation-dependent ubiquitination and degradation of the IFNAR1 chain of type I interferon (IFN) receptor is a robust and specific mechanism that limits the magnitude and duration of IFNα/β signaling. Besides the ligand-inducible IFNAR1 degradation, the existence of an "inside-out" signaling that accelerates IFNAR1 turnover in the cells undergoing the endoplasmic reticulum (ER) stress and activated unfolded protein responses has been recently described. The latter pathway does not require either presence of ligands (IFNα/β) or catalytic activity of Janus kinases (JAK). Instead, this pathway relies on activation of the PKR-like ER kinase (PERK) and ensuing specific priming phosphorylation of IFNAR1. Here, we describe studies that identify the stress activated p38 protein kinase as an important regulator of IFNAR1 that acts downstream of PERK. Results of the experiments using pharmacologic p38 kinase inhibitors, RNA interference approach, and cells from p38α knock-out mice suggest that p38 kinase activity is required for priming phosphorylation of IFNAR1 in cells undergoing unfolded protein response. We further demonstrate an important role of p38 kinase in the ligand-independent stimulation of IFNAR1 ubiquitination and degradation and ensuing attenuation of IFNα/β signaling and anti-viral defenses. We discuss the distinct importance of p38 kinase in regulating the overall responses to type I IFN in cells that have been already exposed to IFNα/β versus those cells that are yet to encounter these cytokines.  相似文献   

12.
Type I interferons (IFN) are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK) cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR) signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP) compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.  相似文献   

13.
An ability to sense pathogens by a number of specialized cell types including the dendritic cells plays a central role in host's defenses. Activation of these cells through the stimulation of the pathogen-recognition receptors induces the production of a number of cytokines including Type I interferons (IFNs) that mediate the diverse mechanisms of innate immunity. Type I IFNs interact with the Type I IFN receptor, composed of IFNAR1 and IFNAR2 chains, to mount the host defense responses. However, at the same time, Type I IFNs elicit potent anti-proliferative and pro-apoptotic effects that could be detrimental for IFN-producing cells. Here, we report that the activation of p38 kinase in response to pathogen-recognition receptors stimulation results in a series of phosphorylation events within the IFNAR1 chain of the Type I IFN receptor. This phosphorylation promotes IFNAR1 ubiquitination and accelerates the proteolytic turnover of this receptor leading to an attenuation of Type I IFN signaling and the protection of activated dendritic cells from the cytotoxic effects of autocrine or paracrine Type I IFN. In this paper we discuss a potential role of this mechanism in regulating the processes of innate immunity.  相似文献   

14.
15.
16.
Two transmembrane polypeptides, IFNAR and IFN-alpha/Beta R, were previously identified as essential components of the type I interferon (IFN) receptor, but their interrelationship and role in ligand binding were not clear. To study these issues, we stably expressed and characterized the two polypeptides in host murine cells. In human cells, native IFN-alpha/beta R is a 102-kDa protein but upon reduction only a 51-kDa protein is detected. In host murine cells human IFN-alpha/beta R was expressed as a 51-kDa protein. Host cells expressing IFN-alpha/beta R bound IFN-alpha 2 with a high affinity (Kd of 3.6 nM), whereas cells expressing IFNAR exhibited no ligand binding. Upon coexpression of IFNAR and the 51-kDa IFN-alpha/beta R, the affinity for IFN-alpha 2 was increased 10-fold, approaching that of the native receptor. We show by cross-linking that both the cloned (51-kDa) and native (102-kDa) IFN-alpha/beta R bind IFN-alpha 2 to form an intermediate product, while IFNAR associates with this product to form a ternary complex. Hence, IFNAR and IFN-alpha/beta R are components of a common type I IFN receptor, cooperating in ligand binding. Ligand-induced association of IFNAR and IFN-alpha/beta R probably triggers transmembrane signaling.  相似文献   

17.
18.
We report the three-dimensional structure of human interferon α-2A (IFN-α2A) bound to the Fab fragment of a therapeutic monoclonal antibody (sifalimumab; IgG1/κ). The structure of the corresponding complex was solved at a resolution of 3.0 Å using molecular replacement and constitutes the first reported structure of a human type I IFN bound to a therapeutic antibody. This study revealed the major contribution made by the first complementarity-determining region in each of sifalimumab light and heavy chains. These data also provided the molecular basis for sifalimumab mechanism of action. We propose that its interferon-neutralizing properties are the result of direct competition for IFN-α2A binding to the IFN receptor subunit 1 (IFNAR1) and do not involve inhibiting IFN-α2A binding to the IFN receptor subunit 2 (IFNAR2).  相似文献   

19.
A method for analyzing ligand–receptor binding kinetics is described, which is based on an engineered FC domain (FChk) that forms a covalent heterodimer. To validate the system, the type I IFN receptors (IFNAR1 and IFNAR2) were expressed as IFNAR1‐FChk, IFNAR2‐FCkh, and IFNAR1/IFNAR2‐FChk fusion proteins. Surface plasmon resonance (SPR) analysis of binary IFNα2a/IFNAR interactions confirmed prior affinity measurements, while the affinity of the IFNα2a/IFNAR1/IFNAR2‐FChk interaction reproduced the affinity of IFNα2a binding to living cells. In cellular assays, IFNAR1/IFNAR2‐FChk potently neutralized IFNα2a bioactivity with an inhibitory concentration equivalent to the KD measured by SPR. These studies suggest that FChk provides a simple reagent to evaluate the binding kinetics of multiple ligand–receptor signaling systems that control cell growth, development, and immunity.  相似文献   

20.
Human interferon-alpha 8 (HuIFN alpha 8), a type I interferon (IFN), is a cytokine belonging to the hematopoietic super-family that includes human growth hormone (HGH). Recent data identified two human type I IFN receptor components. One component (p40) was purified from human urine by its ability to bind to immobilized type I IFN. A second receptor component (IFNAR), consisting of two cytokine receptor-like domains (D200 and D200'), was identified by expression cloning. Murine cells transfected with a gene encoding this protein were able to produce an antiviral response to human IFN alpha 8. Both of these receptor proteins have been identified as members of the immunoglobulin superfamily of which HGH receptor is a member. The cytokine receptor-like structural motifs present in p40 and IFNAR were modeled based on the HGH receptor X-ray structure. Models of the complexes of HuIFN alpha 8 with the receptor subunits were built by superpositioning the conserved C alpha backbone of the HuIFN alpha 8 and receptor subunit models with HGH and its receptor complex. The HuIFN alpha 8 model was constructed from the C alpha coordinates of murine interferon-beta crystal structure. Electrostatic potentials and hydrophobic interactions appear to favor the model of HuIFN alpha 8 interacting with p40 at site 1 and the D200' domain of IFNAR at site 2 because there are regions of complementary electrostatic potential and hydrophobic interactions at both of the proposed binding interfaces. Some of the predicted receptor binding residues within HuIFN alpha 8 correspond to functionally important residues determined previously for human IFN alpha 1, IFN alpha 2, and IFN alpha 4 subtypes by site-directed mutagenesis studies. The models predict regions of interaction between HuIFN alpha 8 and each of the receptor proteins, and provide insights into interactions between other type I IFNs (IFN-alpha subtypes and IFN-beta) and their respective receptor components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号