首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding of four potent antimitotic agents, rhizoxin (RZX), phomopsin A (PMS-A), ansamitocin P-3 (ASMP-3), and vinblastine (VLB), to tubulins from RZX-sensitive and -resistant strains of Aspergillus nidulans, Schizosaccharomyces pombe, and Saccharomyces cerevisiae was investigated. Mycelial extracts to which RZX could bind contained beta-tubulin with Asn as the 100th amino acid residue (Asn-100) in all cases, and those without affinity for RZX contained beta-tubulins with either Ile-100 or Val-100. Though PMS-A shares the same binding site as RZX and ASMP-3 on porcine brain tubulin (Asn-100), only ASMP-3 bound Asn-100 fungal tubulins in a competitive manner with respect to RZX. PMS-A and VLB, which strongly bind to porcine brain tubulin, did not bind to any of the fungal mycelial extracts examined. The results indicate differential interactions of these antimitotic agents with brain and fungal tubulins.  相似文献   

2.
3.
Structural redesign of selected non-steroidal estrogen receptor binding compounds has previously been successful in the discovery of new inhibitors of tubulin assembly. Accordingly, tetra-substituted alkene analogues (2130) were designed based in part on combinations of the structural and electronic components of tamoxifen and combretastatin A-4 (CA4). The McMurry coupling reaction was used as the key synthetic step in the preparation of these tri- and tetra-arylethylene analogues. The structural assignment of E, Z isomers was determined on the basis of 2D-NOESY experiments. The ability of these compounds to inhibit tubulin polymerization and cell growth in selected human cancer cell lines was evaluated. Although the compounds were found to be less potent than CA4, these analogues significantly advance the known structure–activity relationship associated with the colchicine binding site on β-tubulin.  相似文献   

4.
Characteristics of the interaction of dinitroaniline compounds with tubulin molecules have an extremely high selectivity: these substances efficiently bind to the tubulins of both plant and protozoan origins and practically do not interact with any animal and fungal tubulins despite a very high similarity between the corresponding sequences. This work summarizes and comprehensively analyzes the specific structural features and mechanisms of these interactions, in particular, the patterns of the structure and arrangement of dinitroaniline binding sites on the surface of different tubulin subunits and tubulins of various origins. Dinitroaniline binding sites are localized to the surface of longitudinal contacts between tubulin subunits and contain diamine amino acid residues (lysine or arginine), which bind the nitrile group of dinitroanilines. The localizations of these sites on the surface of identical subunits of different origins (for example, α-tubulins of plants and protozoans) coincide; however, the location of these binding sites on the surfaces of tubulin α- and β-subunits is different. The characterized sites can also be potential binding sites for other antimicrotubule compounds, in particular, cyanoacrylates.  相似文献   

5.
Computational tools such as CoMSIA and CoMFA models reported in a recent study revealed the structure–activity relationships ruling the interactions occurring between hydrophobic N-phenyl-N′-(2-chloroethyl)ureas (CEU) and the colchicine-binding site (C-BS) on βΙΙ-tubulin. Here, we describe the mechanisms involved in the covalent binding of three subsets of CEU derivatives to the C-BS. The FlexiDock experiments confirmed that the interaction of non-covalent portions of the CEU auxophore moiety of CEU is involved in the binding of the drug to the C-BS facilitate the nucleophilic attack of Glu-β198 rather than Cys-β239. In addition, these studies suggest that Cys-β239 together with Asn-α99, Ser-α176, Thr-α177, Leu-β246, Asn-β247, Ala-β248, Lys-β252 and Asn-β256 are implicated in the stabilization of a C-BS–CEU complex prior to the acylation of Glu-β198 by CEU. Our molecular models propose the formation of a stabilized C-BS–CEU complex before the completion of the Glu-β198 acylation; acylation triggering conformational changes of β-tubulin, microtubule depolymerization and anoikis. The computational models presented here might be useful to the design of selective and more potent C-BS inhibitors. Of interest, in vivo acylation of acidic amino acid residues by xenobiotics is an unusual reaction and may open new approaches for the design of irreversible protein inhibitors such as tubulin.  相似文献   

6.
Few studies have investigated microtubules from plants that host pathogenic fungi. Considerable efforts are underway to find an antimitotic agent against plant pathogens like Phytophthora infestans. However, screening the effects of antifungal agents on plant tubulin in vivo or using purified native microtubule in vitro is a time consuming process. A recombinant, correctly folded, microtubule-like structure forming tubulin could accelerate research in this area. In this study, we cloned full length cDNAs isolated from potato leaves using reverse-transcribed polymerase chain reaction (RT-PCR). Solanum tuberosum (Stub) α-tubulin and β-tubulin were predicted to encode 449 and 451 amino acid long proteins with molecular masses of 57 kDa and 60 kDa, respectively. Average yields of α- and β-tubulin were 2.0–3.5 mg l?1 and 1.3–3.0 mg l?1 of culture, respectively. The amino acids, His6, Glu198, and Phe170 involved in benomyl sensitivity were conserved in Stub tubulin. The dimerization of tubulin monomers was confirmed by western blot analysis. When combined under appropriate conditions, these recombinant α- and β-tubulins were capable of polymerizing into microtubules. Accessibility of cysteine residues of tubulin revealed that important ligand binding sites were folded correctly. This recombinant tubulin could serve as a control of phytotoxicity of selected antimitotic fungicide compounds during in vitro screening experiments.  相似文献   

7.
Freedman H  Luchko T  Luduena RF  Tuszynski JA 《Proteins》2011,79(10):2968-2982
Tubulin, an α/β heterodimer, has had most of its 3D structure analyzed; however, the carboxy (C)-termini remain elusive. Importantly, the C-termini play critical roles in regulating microtubule structure and function. They are sites of most of the post-translational modifications of tubulin and interaction sites with molecular motors and microtubule-associated proteins. Simulated annealing was used in our molecular dynamics modeling to predict the interactions of the C-terminal tails with the tubulin dimer. We examined differences in their flexibility, interactions with the body of tubulin, and the existence of structural motifs. We found that the α-tubulin tail interacts with the H11 helix of β-tubulin, and the β-tubulin tail interacts with the H11 helix of α-tubulin. Tail domains and H10/B9 loops interact with each other and compete for interactions with positively-charged residues of the H11 helix on the neighboring monomer. In a simulation in which α-tubulin's H10/B9 loop switches on sub-nanosecond intervals between interactions with the C-terminal tail of α-tubulin and the H11 helix of β-tubulin, the intermediate domain of α-tubulin showed more fluctuations compared to those in the other simulations, indicating that tail domains may cause shifts in the position of this domain. This suggests that C-termini may affect the conformation of the tubulin dimer which may explain their essential function in microtubule formation and effects on ligand binding to microtubules. Our modeling also provides evidence for a disordered-helical/helical double-state system of the T3/H3 region of the microtubule, which could be linked to depolymerization following GTP hydrolysis.  相似文献   

8.
Plinabulin (1, NPI-2358), a potent microtubule-targeting agent derived from the natural diketopiperazine ‘phenylahistin’ with a colchicine-like tubulin depolymerization activity, is an anticancer agent undergoing Phase II clinical trials in four countries including the United States. In order to understand the precise binding mode of plinabulin with tubulin, a new bioactive biotin-tagged photoaffinity probe 4 (KPU-244-B3) was designed and synthesized. Probe 4 showed significant binding affinity to tubulin in a binding assay, and selectively bound to tubulin in an HT-1080 cell lysate without photo-irradiation. In a tubulin photoaffinity labeling study, probe 4 labeled both α- and β-tubulin subunits and these interactions were competitively inhibited by plinabulin during photo-irradiation. These results suggest that plinabulin binds in the boundary region between α- and β-tubulin near the colchicine binding site, and not inside the colchicine binding cavity.  相似文献   

9.
A series of dihalogenated chalcones and structurally related dienones were synthesized and evaluated for their antiproliferative activity in 10 different cancer cell lines and for their effect on microtubule assembly. All compounds showed cytotoxic activity, with IC(50) values in the 5-280 μM range depending on the chalcone structure and the cell line. Five of the compounds were found to be tubulin polymerization inhibitors. In contrast, one of the compounds was found to stabilize tubulin to the same extent as the anticancer drug docetaxel. Molecular modeling suggested that the tubulin inhibitors bind to the colchicine binding site of β-tubulin while the novel tubulin stabilization agent seems to interact with the paclitaxel binding site.  相似文献   

10.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

11.
c-Jun N-terminal kinase (JNK) activation is linked to the aberrant cell death in several neurodegenerative disorders, including Parkinson's and Alzheimer's disease. The sequence similarity among the JNK isoforms and fellow MAP kinase family member p38 has rendered the challenge of producing JNK3-specific inhibitors difficult. Using the crystal structure of JNK3 complexed with JNK inhibitors, potential compound-interacting amino acid residues were mutated to the corresponding residues in p38. The effects of these mutations on the kinetic parameters with three compounds were examined: a JNK3- (vs. p38-) selective inhibitor (SP 600125); a p38-selective inhibitor (Merck Z); and a potent combined JNK3 and p38 inhibitor (Merck Y). The data confirm the role of the JNK3 residues Ile-70 and Val-196 in both inhibitor and ATP-binding. Remarkably, the Ile-70-Val and Val-196-Ala mutations caused an increase and decrease, respectively, in the binding affinity of the p38-specific compound, Merck Z, of 10-fold. The Ile-70-Val effect may be due to the increased capacity of the active site to accommodate Merck Z, whereas the Val-196-Ala mutant may induce an unfavourable conformational change. Conservative mutations of the Asn-152 and Gln-155 residues inactivated the JNK3 enzyme, possibly interfering with protein folding in a critical hinge region of the protein.  相似文献   

12.
Cryptophycin-52 (Cp-52) is potentially the most potent anticancer drug known, with IC50 values in the low picomolar range, but its binding site on tubulin and mechanism of action are unknown. Here, we have determined the binding site of Cp-52, and its parent compound, cryptophycin-1, on HeLa tubulin, to a resolution of 3.3 Å and 3.4 Å, respectively, by cryo-EM and characterized this binding further by molecular dynamics simulations. The binding site was determined to be located at the tubulin interdimer interface and partially overlap that of maytansine, another cytotoxic tubulin inhibitor. Binding induces curvature both within and between tubulin dimers that is incompatible with the microtubule lattice. Conformational changes occur in both α-tubulin and β-tubulin, particularly in helices H8 and H10, with distinct differences between α and β monomers and between Cp-52-bound and cryptophycin-1-bound tubulin. From these results, we have determined: (i) the mechanism of action of inhibition of both microtubule polymerization and depolymerization, (ii) how the affinity of Cp-52 for tubulin may be enhanced, and (iii) where linkers for targeted delivery can be optimally attached to this molecule.  相似文献   

13.
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+ TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other + TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of α-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both α-tubulin and β-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both α-tubulin and β-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the + TIP network.  相似文献   

14.
The synthesis, cytotoxicity, inhibition of tubulin polymerization data and anti-angiogenetic effects of seven 1,5-disubstituted 1,2,3-triazole analogs and two 1,4-disubstituted 1,2,3-triazole analogs of combretastatin A-1 (1) are reported herein. The biological studies revealed that the 1,5-disubstituted 1,2,3-triazoles 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diol (6), 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diamine (8) and 5-(2,3-difluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (9) were the three most active compounds regarding inhibition of both tubulin polymerization and angiogenesis. Molecular modeling studies revealed that combretastatins 1 and 2 and analogs 5-11 could be successfully docked into the colchicine binding site of α,β-tubulin.  相似文献   

15.
The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedl?nder reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.  相似文献   

16.
Identification of a gene for beta-tubulin in Aspergillus nidulans.   总被引:50,自引:0,他引:50  
G Sheir-Neiss  M H Lai  N R Morris 《Cell》1978,15(2):639-647
The tubulins of Aspergillus nidulans have been characterized in wild-type and ben A, B and C benomyl-resistant strains by two-dimensional gel electrophoresis, co-polymerization with porcine brain tubulin and peptide mapping. Four α-tubulins and at least four β-tubulins were resolved by two-dimensional gel electrophoresis of wild-type proteins. Eighteen of 26 benA mutants studied had electrophoretically abnormal β-tubulins. In these strains, one or more of the β-tubulins had either an altered isoelectric point or an altered electrophoretic mobility in the SDS gel dimension, or was diminished in amount. The a-tubulins were normal. Two-dimensional gels of protein extracts of a ben A/wild-type diploid strain demonstrated co-expression of the wild-type β-tubulins with the variant ben A tubulin. This experiment rules out post-translational modification as the source of the β-tubulin abnormalities in the benA mutants. We therefore conclude that benA must be a structural gene for β-tubulin. Due to the variety of abnormalities affecting β-tubulins in ben A mutants, and the absence of abnormalities affecting α-tubulins in any of the benomyl-resistant mutants, we also believe that the benomyl binding site must be located on the β-subunit of the tubulin dimer. The benA mutants of A. nidulans promise to be useful not only for characterizing the biochemical determinants of the benomyl binding site of tubulin but also for understanding the relationship between tubulin structure and function.  相似文献   

17.
To obtain information on plant microtubule stability to low temperature and Ca2+, the regulatory domain of polymerized tubulin from maize (Zea mays ev. Black Mexican Sweet) was dissected by limited proteolysis with subtilisin. Tubulin in taxol-stabilized microtubules was cleaved in a subtilisin concentration- and time-dependent manner. Immunoblotting of microtubules with antibodies having mapped epitopes on α- and β-tubulins revealed that cleavage initially removed ≤15 residues from the β-tubulin carboxyl terminus to produce αβs-microtubules. Subsequent cleavage occurred at an extreme site and an internal site within the α-tubulin carboxyl terminus. Electron microscopy revealed that αβs-microtubules were ultra structurally indistinguishable from uncleaved control αβ-micro-tubules. Quantitative polymer sedimentation showed that low temperature treatment (0°C) caused significant depolymerization of αβ-microtubules, but little depolymerization of αβs-microtubules. Ca2+ enhanced the cold-induced depolymerization of both αβ- and αβs-microtubules. However, αβs-microtubules were significantly more stable to depolymerization by cold and Ca2+ than were αβ-micro-tubules. The results showed that maize microtubules containing shortened β-tubulin carboxyl termini are relatively resistant to the combined depolymerizing effects of cold and Ca2+. Thus, the extreme carboxyl terminus of β-tubulin is a crucial element of the plant tubulin regulatory domain and may be involved in the modulation of microtubule stability during the chilling response in plants.  相似文献   

18.
The N-methyl-d-aspartate (NMDA) receptor is a ligand-gated ion channel that requires both glutamate and glycine for efficient activation. Here, a strategy combining cysteine scanning mutagenesis and affinity labeling was used to investigate the glycine binding site located on the NR1 subunit. Based on homology modeling to the crystal structure of the glutamate binding site of the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)-propionic acid receptor GluR2, cysteines were introduced into the NR1 subunit as chemical sensors for three thiol-reactive derivatives of the competitive antagonist L-701324. After coexpressing the mutant NR1 with wild-type NR2B subunits in Xenopus oocytes, agonist-induced currents were recorded to monitor irreversible receptor inactivation by the reactive antagonists. For each derivative, glycine site-specific inactivations were observed with a distinct subset of cysteine-substituted receptors. Together these inactivating substitutions identified seven NR1 residues (Ile-385, Gln-387, Glu-388, Thr-500, Asn-502, Ala-696, and Val-717) that undergo proximity-induced covalent coupling with specific regions of the bound antagonist and disclose its mode of docking in the glycine binding pocket of the NMDA receptor. Our approach may help to unravel the structural basis of distinct NMDA receptor subtype pharmacologies.  相似文献   

19.
Two new aryl azides, (Z)-1-(3'-azido-4'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 9 and (Z)-1-(4'-azido-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 5, modeled after the potent antitumor, antimitotic agent combretastatin A-4 (CA-4), have been prepared by chemical synthesis as potentially useful photoaffinity labeling reagents for the colchicine site on beta-tubulin. Aryl azide 9, in which the 3'-hydroxyl group of CA-4 is replaced by an azido moiety, demonstrates excellent in vitro cytotoxicity against human cancer cell lines (NCI 60 cell line panel, average GI50 = 4.07 x 10(-8) M) and potent inhibition of tubulin polymerization (IC50 = 1.4+/-0.1 microM). The 4'-azido analogue 5 has lower activity (NCI 60 cell line panel, average GI50 = 2.28 x 10(-6) M, and IC50 = 5.2+/-0.2 microM for inhibition of tubulin polymerization), suggesting the importance of the 4'-methoxy moiety for interaction with the colchicine binding site on tubulin. These CA-4 aryl azide analogues also inhibit binding of colchicine to tubulin, as does the parent CA-4, and therefore these compounds are excellent candidates for photoaffinity labeling studies.  相似文献   

20.
Lu Lu  Jie Nan  Lan-Fen Li  Xiao-Dong Su  Yi Li 《FEBS letters》2010,584(16):3533-3539
Microtubules are composed of polymerized α/β-tubulin heterodimers. Biogenesis of assembly-competent tubulin dimers is a complex multistep process that requires sequential actions of distinct molecular chaperones and cofactors. Tubulin folding cofactor A (TFCA), which captures β-tubulin during the folding pathway, has been identified in many organisms. Here, we report the crystal structure of Arabidopsis thaliana TFC A (KIESEL, KIS), which forms a monomeric three-helix bundle. The functional binding analysis demonstrated that KIS interacts with β-tubulin in plant. Furthermore, mutagenesis studies indicated that the α-helical regions of KIS participate in β-tubulin binding. Unlike the budding yeast TFC A, the two loop regions of KIS are not required for this interaction suggesting a distinct binding mechanism of TFC A to β-tubulin in plants.

Structured summary

MINT-7968902, MINT-7968915, MINT-7968951, MINT-7968966: KIS (uniprotkb:O04350) physically interacts (MI:0915) with Tub9 (uniprotkb:P29517) by anti tag coimmunoprecipitation (MI:0007)MINT-7968928: KIS (uniprotkb:O04350) and Tub9 (uniprotkb:P29517) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号