首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
连续递增负荷条件下肌肉活动的力-电关系   总被引:1,自引:0,他引:1  
目的:观察非疲劳状态下肱二头肌在静态连续递增负荷下sEMG信号的线性和非线性指标变化规律,探讨非疲劳状态下肌肉活动的力-电关系。方法:记录11名男性受试者肱二头肌在完成为时5s连续递增负荷等长收缩过程中的sEMG信号,观察线性分析指标AEMG、MPF、MF与非线性分析指标C(N)和DET%的变化规律。结果:AEMG由第1s的112.14μV逐渐上升到第5s的1277.18μV,与负荷水平呈明显线性相关;DET%从第1s的74.95下降到第5s的46.78,呈单调递减变化;MPF、MF和C(N)在本试验条件下未发生明显改变。结论:在连续递增收缩过程中,线性分析指标AEMG呈线性递增性变化,而MPF和MF无显著改变;非线性分析指标DET%随用力程度的连续递增而递减,而C(N)则保持相对稳定。  相似文献   

2.
目的:探讨肌肉疲劳过程中sEMG功率谱变化与H 的关系以及可能存在的其它影响因素.方法:利用肌肉进行疲劳收缩结束后,短时间内肌肉pH值尚无明显改变的特性,观察恢复期30 s内s EMG功率谱的变化规律.八名男性受试者,以肱二头肌为目标肌肉,负荷强度为60%MVC,静态持续负荷至疲劳点后,在恢复期以同样负荷分别观察2 s、4 s、6 s、8 s、10 s、20 s、30 s时的sEMG信号特征.结果:肱二头肌在以60%MVC静态疲劳负荷过程中MPF呈线性下降.在疲劳负荷后的恢复期,MPF恢复极其迅速,运动结束后仅2 s,MPF已恢复到整个下降范围的26.5%;至30 s,MPF已恢复到整个下降范围的87.7%.结论:由[H ]增加引起的肌纤维动作电位传导速度下降不是决定sEMG功率谱左移的唯一因素,提示sEMG功率谱左移可能与神经源性的中枢机制的作用有关.  相似文献   

3.
局部肌肉疲劳的表面肌电信号复杂度和熵变化   总被引:6,自引:0,他引:6  
目的 在于探讨静态和动态疲劳性运动过程中肱二头肌和腰部脊竖肌表面肌电(surface electromyography,sEMG)信号的Lempel-Ziv复杂度和Kolmogorov熵的变化规律。18名男性大学生志愿者被随机分为肱二头肌和腰部脊竖肌运动负荷组,分别完成静态和动态疲劳运动负荷试验。运动负荷期间连续记录sEMG信号,在对运动负荷时间和重复次数进行标准化处理后,截取相应时段的sEMG信号,计算Lempel-Ziv复杂度和Kolmogorov熵,观察它们随肌肉疲劳发展的变化规律。研究结果表明,无论是静态还是动态疲劳运动条件下,被检肌肉sEMG信号的复杂度和熵均随着运动负荷时间呈现明显的单调递减型变化。该变化可能与神经系统渐进性协调众多运动单位同步收缩的‘协同效应”有关。  相似文献   

4.
目的:观察女性受试者在不同坐姿久坐前后腰部肌肉表面肌电(sEMG)信号的变化,探讨不同姿势的久坐对竖脊肌功能状态的影响。方法:32名女性受试者随机分成4组,分别在4种不同的座椅(座椅A、B、C、D)上久坐2 h。记录受试者腰部竖脊肌在久坐前后2次最大随意收缩力量(MVC)测试中的sEMG信号,观察测试过程中的前3 s时频指标及全程频域指标的变化。结果:3 s的时频指标平均肌电振幅(AEMG)、平均功率谱频率(MPF)在不同坐姿久坐前后无显著性差异,其中AEMG在座椅B组中明显大于座椅A组;全程信号的频域指标MPF在久坐后显著减小,但在不同坐姿之间无显著性差异。结论:女性受试者在4种不同坐姿2 h久坐前后腰部竖脊肌的最大活动水平无明显改变;最大持续收缩能力在久坐后下降,但在不同坐姿间并无显著差异。  相似文献   

5.
Li H  Jiao B  Yu ZB 《生理学报》2007,59(3):369-374
为研究模拟失重大鼠萎缩比目鱼肌强直收缩疲劳后恢复速率的影响因素,采用尾部悬吊模拟失重大鼠模型及离体骨骼肌条灌流技术,观测其在不同收缩模式下疲劳后的恢复过程。正常大鼠离体比目鱼肌条实验显示,10s短时程(S10P)与300s长时程(L10P)强直收缩轻度疲劳[强直收缩最大张力(P0)下降10%]后,在20min恢复期末,均可恢复至疲劳前P0,且恢复程度不受疲劳持续时间的影响;轻度疲劳后,在灌流液中加入10μmol/L钌红抑制肌浆网Ca^2+释放功能,恢复速率减慢,恢复程度最大仅至94%P0,然后呈下降趋势,提示轻度疲劳可能仅抑制肌原纤维功能。60s短时程(S50P)与300s长时程(L50P)强直收缩中度疲劳(P0下降50%)后,在20min恢复期末,收缩张力分别恢复至95%P0和90%P0,表明中度疲劳持续时间影响恢复的速率;相同条件中度疲劳后,在灌流液中加入5mmol/L咖啡因促进肌浆网Ca62+释放功能,恢复速率明显加快,无论疲劳持续时间长短,5min便可完全恢复,提示中度疲劳不仅抑制肌原纤维功能,还抑制肌浆网Ca^2+释放功能。尾部悬吊1周的大鼠比目鱼肌明显萎缩,其重量/体重之比仅为对照大鼠的60%。采用短与长持续时间的轻与中度疲劳作用后,在20min恢复期末,收缩张力分别恢复至94%P0(S10P)、95%P0(L10P)、92%P0(S50P)、84%P0(L50P),均与同步对照组有显著差异。以上结果提示:模拟失重1周大鼠萎缩的比目鱼肌,轻度与中度疲劳均可抑制肌原纤维功能与肌浆网Ca^2+释放功能,使恢复速率减慢。  相似文献   

6.
目的:研究兔膈肌肌条力学对不同频率慢性电刺激(CES)的适应性变化特征和细胞外Ca^2+变化夺其力学特征的影响。方法:测定正常对照组和CES组的颤搐收缩张力(Pt)、峰值张力时间(TPT)、1/2松弛时间(1/2RT)、强直颤搐收缩张力(Po)、疲劳指数(FI)和疲劳恢复指数(FRI);观察在无Ca^2+Hank’s液和标准Hank’s液时肌条收缩张力消失和恢复的时间差异。结果:①同对照组作比较,  相似文献   

7.
付聪  李强  李博 《生物磁学》2011,(20):3951-3953
目的:本文以设计的表面~g(sEMG)信号采集系统为基础,探讨sEMG信号中的降噪处理问题。方法:结合sEMG信号的噪声影响情况,首先利用带通滤波器消除肌电信号频带外噪声,再通过频谱插值法来抑制工频干扰分量,最后使用小波分析方法来削弱肌电信号频带内噪声。结果:通过对检测sEMG信号的降噪处理,信号噪声得到明显抑制。结论:所设计采集系统能够获得满意的sEMG信号检测效果,所采用降噪方法能够有效提高sEMG信号的质量。  相似文献   

8.
DTX4(Deltex 4 homolog)蛋白属于Deltex家族成员|Deltex家族是Notch信号通路的调节因子. 已知Notch信号通路在成肌分化中发挥重要作用. 然而,DTX4是否参与调控肌肉发育尚未有报道. 本研究探索DTX4对成肌分化的影响及作用机制. 实时定量PCR和蛋白质印迹分析揭示,伴随小鼠C2C12成肌细胞(myoblast)分化为肌管(myotube)过程,成肌分化标志蛋白肌球蛋白重链(myosin heavy-chain,MyHC)、肌细胞生成素(myogenin)表达逐渐升高,DTX4 mRNA及蛋白质表达水平也逐渐升高. 通过顺序专一的siRNA敲减DTX4表达后,C2C12成肌细胞肌管面积和肌管融合指数明显减少|MyHC、肌细胞生成素蛋白表达水平明显降低|但ERK信号通路未见明显变化.上述结果表明,敲减DTX4表达抑制C2C12细胞成肌分化.我们的结果提示,DTX4可能参与C2C12细胞成肌分化.  相似文献   

9.
李博  李强 《生物磁学》2011,(20):3942-3945
目的:本文利用表面肌电(sEMG)信号来研究多种手指组合动作的识别问题。方法:在对采集的四个通道sEMG信号进行降噪预处理的基础上,采用移动加窗处理方法来提取关于手指运动状态的信号活动段,再分析各个信号活动段的小波系数统计特征,进而利用多类支持向量机(SVM分类算法来实现手指组合动作的识别。结果:动作识别率最高达到100%。结论:所采用方法能够有效地识别多种手势动作,并为后续基于肌电信号的实时人机接口系统的研究奠定了理论基础。  相似文献   

10.
目的:通过对慢性非特异性颈部不适飞行员与无症状飞行员之间头颈夹肌表面肌电特征的比较,为慢性非特异性颈部不适飞行员的早期诊断提供参考依据。方法:用表面肌电仪测量52名慢性非特异性颈部不适飞行员与11名无症状飞行员双侧头颈夹肌的松弛状态、等长收缩以及异长收缩时的表面肌电特征,分析不同状态下双侧头颈夹肌疲劳性肌电指标MFs、MPFs、ZCRs以及平均肌电AEMG值,用统计学软件SPSS 18.0分析实验结果。结果:非特异性颈部不适飞行员与无症状飞行员双侧头颈夹肌在松弛状态时疲劳性肌电指标MFs、MPFs、ZCRs比较均无统计学差异(P0.05),其双侧头颈夹肌在等长收缩和异长收缩时间有统计学差异(P0.05)。头颈夹肌处于松弛状态时,两组间平均肌电AEMG比较无统计学差异(P0.05),而在肌肉等长收缩和异长收缩时,两组间比较有统计学差异(P0.05)。结论:慢性非特异性颈部不适飞行员与无症状飞行员之间头颈夹肌表面肌电相关指标存在统计学差异,慢性颈部不适的飞行员相比无症状飞行员更易出现头颈夹肌的疲劳以及头颈夹肌的功能下降。头颈夹肌表面肌电特征有助于早期诊断慢性非特异性颈部不适飞行员的肌肉功能状态的改变。  相似文献   

11.
Transient elastography consists of measuring the transverse local shear elastic modulus defined as local muscle hardness (LMH). It has previously been shown that LMH is correlated to muscle activity level during non-fatiguing contractions. The aim of this study was to describe how LMH and muscle activity level change during a submaximal fatiguing constant-torque protocol. Changes in gastrocnemius medialis LMH and in surface electromyographic activities (sEMG) of plantar flexors induced by a submaximal isometric plantar flexion (40% of the maximal isometric torque) until exhaustion were quantified. During the contraction, sEMG of each muscle increased (P<0.001) whereas LMH remained constant (P>0.05). Active LMH assessed during the contraction did not parallel muscle activity level changes during this type of submaximal fatigue protocol. Interestingly, LMH at rest assessed in passive conditions was higher prior to the fatiguing effort (P<0.05), rather than that assessed immediately after. Muscle and tendon viscous behaviors could imply a creep phenomenon during a prolonged isometric contraction, and our results in LMH at rest could indicate that this phenomenon induces changes in muscle intrinsic mechanical properties. Further studies are needed to examine whether it could have an influence on muscle activity levels during the contraction.  相似文献   

12.
Surface electromyograms(EMG) during test contractions (TCs) were studied to assess the muscle strain in simulated mushroom picking. Additionally, the duration of the TC for the effective assessment was investigated. Nine female subjects performed standardized shoulder abduction and a stooped posture for one minute as TCs. Each experiment consisted of a 60-min rest, three work periods (W1-W3), a 30-min rest, and two work periods (W4 and W5) separated by a 30-min rest period. The duration of each work period was about 20 min. A total of 18 TCs was performed between the work periods and every 10 minutes in the rest periods. EMGs were recorded from the trapezius, infraspinatus, deltoid, and erector spinae muscles. The amplitude of EMG (AEMG) and mean power frequency (MPF) of EMG were calculated. Each TC was divided equally into three parts. Ratings of perceived exertion (RPE) in the neck, shoulder and low-back were reported during TCs. The work increased RPE of all the parts. AEMG and RPE were increased and MPF was decreased by W1, W2 and W3 in the neck and shoulder muscles. MPF of the erector spinae was increased by the work. The results were not affected by the duration of TCs and the parts during the TCs. AEMG and MPF fluctuated before W1 although the changes of RPE were small. Averaging several TCs was recommended to get stable results from TCs. EMG changes and appropriate TC conditions were discussed in relation to the adaptation in fatiguing contractions.  相似文献   

13.
The purpose of this study was to investigate the sensitivity of new surface electromyography (sEMG) indices based on the discrete wavelet transform to estimate acute exercise-induced changes on muscle power output during a dynamic fatiguing protocol. Fifteen trained subjects performed five sets consisting of 10 leg press, with 2 min rest between sets. sEMG was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were computed. These were: mean rectified voltage (MRV), median spectral frequency (Fmed), Dimitrov spectral index of muscle fatigue (FInsm5), as well as five other parameters obtained from the stationary wavelet transform (SWT) as ratios between different scales. The new wavelet indices showed better accuracy to map changes in muscle power output during the fatiguing protocol. Moreover, the new wavelet indices as a single parameter predictor accounted for 46.6% of the performance variance of changes in muscle power and the log-FInsm5 and MRV as a two-factor combination predictor accounted for 49.8%. On the other hand, the new wavelet indices proposed, showed the highest robustness in presence of additive white Gaussian noise for different signal to noise ratios (SNRs). The sEMG wavelet indices proposed may be a useful tool to map changes in muscle power output during dynamic high-loading fatiguing task.  相似文献   

14.
The purpose of this study was to compare the time to task failure for a series of intermittent submaximal contractions performed with the elbow flexor muscles by men and women who were matched for strength (n = 20, 18-34 yr). The fatigue task comprised isometric contractions at 50% of maximal voluntary contraction (MVC) torque (6-s contraction, 4-s rest). The MVC torque was similar for the men and women [64.8 +/- 9.2 (SD) vs. 62.2 +/- 7.9 N.m; P > 0.05]. However, the time to task failure was longer for the women (1,408 +/- 1,133 vs. 513 +/- 194 s; P < 0.05), despite the similar torque levels. The mean arterial pressure, heart rate, and rating of perceived exertion started and ended at similar values for the men and women, but the rate of increase was less for the women. The rate of increase in the average of the rectified electromyogram (AEMG; % peak MVC) for the elbow flexor muscles was less for the women: the AEMG was greater for the men compared with the women at task failure (72 +/- 28 vs. 50 +/- 21%; P < 0.05), despite similar AEMG values at the start of the fatiguing contraction (32 +/- 9 vs. 36 +/- 13%). These results indicate that for intermittent contractions performed with the elbow flexor muscles 1) the sex difference in time to task failure was not explained by the absolute strength of the men and women, but involved another mechanism that is present during perfused conditions, and 2) men required a more rapid increase in descending drive to maintain a similar torque.  相似文献   

15.
The purpose of this study was to examine acute exercise-induced changes on muscle power output and surface electromyography (sEMG) parameters (amplitude and spectral indices of muscle fatigue) during a dynamic fatiguing protocol. Fifteen trained subjects performed five sets consisting of 10 leg presses (10RM), with 2 min rest between sets. Surface electromyography was recorded from vastus medialis (VM) and lateralis (VL) and biceps femoris (BF) muscles. A number of EMG-based parameters were compared for estimation accuracy and sensitivity to detect peripheral muscle fatigue. These were: Mean Average Voltage, median spectral frequency, Dimitrov spectral index of muscle fatigue (FInsm5), as well as other parameters obtained from a time–frequency analysis (Choi–Williams distributions) such as mean and variance of the instantaneous frequency and frequency variance. The log FInsm5 as a single parameter predictor accounted for 37% of the performance variance of changes in muscle power and the log FInsm5 and MFM as a two factor combination predictor accounted for 44%. Peripheral impairments assessed by sEMG spectral index FInsm5 may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task.  相似文献   

16.
Motivated by biochemical processes during muscular contraction, a model is constructed that predicts isometric force from surface electromyographic signals (sEMG). The model is experimentally validated and then it is used to predict contractions from sEMG data. The calculated simulations reveal a highly non-linear relationship between sEMG and isometric force.  相似文献   

17.
This study was aimed at investigating the time-course and recovery from eccentric (EC) exercise induced muscle damage by means of surface electromyography (sEMG), ultrasonography (US), and blood enzymes. Five subjects (EC Group) performed two bouts of 35 EC maximum contractions with the biceps brachii of their non dominant arm, five subjects were tested without performing EC (Control Group: CNT). The maximal isometric force (MVC) was measured. Force and sEMG signals were recorded during 80% MVC isometric contractions. In EC and CNT subjects US assessment on non-dominant biceps brachii was performed; creatin kinase (CK) and lactic dehydrogenasis (LDH) plasma levels were also assessed. Force, sEMG and CK-LDH measurements were performed before EC and after it periodically for 4 weeks. The sEMG was analysed in time and frequency domains; a non-linear analysis (Lyapunov 1st exponent, L1) of sEMG was also performed. After EC, the MVC was reduced by 40% on average with respect to the pre-EC values. A significant decrease in the initial frequency content, and in the MDF and L1 decay (13-42% less than the pre-EC values, respectively) was also observed. The sEMG amplitude (Root Mean Square, RMS) was unchanged after EC. The US revealed an increase in muscle belly thickness and in local muscle blood flow after EC. A complete recovery of all the considered parameters was achieved in two weeks. In conclusion sEMG analysis was confirmed as an early indicator of muscle damage. Muscle recovery from damage is followed by both sEMG and US and this may have useful clinical implications. Non linear analysis (L1) was revealed to be sensitive to early sEMG modifications induced by EC as well as able to follow the post EC changes in the sEMG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号