首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Collagenase (EC 3.4.24.3) activity can be measured directly in homogenates of the involuting rat uterus. Latent forms of collagenase are activated by a brief exposure to trypsin; trypsin activity is then blocked with soybean trypsin inhibitor. Homogenizing conditions have been developed that permit 90-95% recovery of the total active and latent collagenase activity in a 6000 X g pellet, where it is presumably bound to its collagen substrate. This insoluble activity can then be extracted by heating to 60 degrees C for 4 min in 0.04 M Tris - HCl buffer, pH 7.5, containing 0.1 M CaCl2. Methods are presented for the estimation of the recovery of collagenase in the extracts; this approximates 65-70% of the total. Small amounts of activity can also be extracted from rat liver and kidney. This extraction procedure should be of use in purifying collagenase without culturing the enzyme-producing tissue and in the direct assay of tissue collagenase activity. The activity extracted from rat uterus has been proven to be collagenase by its characteristic pattern of collagen breakdown products on disc electrophoresis and by the split of tropocollagen at interband 41 as shown by electron microscopy of reconstituted fragments. The activity is inhibited by EDTA, and this inhibition is not reversed by calcium or zinc ions.  相似文献   

2.
A new method for 3H-labeling of native collagen and a specific microassay for collagenase activity are presented. Acid-soluble type I collagen derived from rat tail tendons was reacted with pyridoxal phosphate and then reduced with NaB3H4 to yield [3H]collagen with a specific activity of more than 10 μCi/mg. With respect to rate of hydrolysis, trypsin susceptibility, and gelling properties this collagen compares favorably with biosynthetically labeled preparations. It was shown that chemical labeling procedures such as this, or N-acetylation with acetic anhydride, do not adversely affect properties of collagen which are important for its use as substrate in specific assays. The microassay employs 50-μl [3H]collagen gels (1 mg/ml) dispensed in microtest plates. At 36°C this assay combines rapid rate of hydrolysis with low trypsin susceptibility. As little as 1 ng of clostridial collagenase activity can be measured reproducibly. The high specific activity of the [3H]collagen allowed us to explore microassay conditions employing minute quantities of substrate in solution. These studies indicated that native type I collagen whether labeled or not, is cleaved in the helical region by trypsin at subdenaturation temperatures. It was concluded that, in order to remain specific, collagenase assays with collagen in solution as with collagen in fibrils must be performed at 10–12°C below the denaturation temperature, i.e., at 35–37°C with collagen gels and 27–29°C with collagen in solution.  相似文献   

3.
A rapid, sensitive collagenase assay has been developed using14C-acetylated collagen as a substrate. Acid-soluble calfskin collagen was labeled with [1-14C]acetic anhydride at pH 8. The acetylated collagen had a specific activity of 6.25 × 105 dpm/mg protein. Collagen was not denatured as evidenced by its resistance to nonspecific proteolysis and sensitivity to bacterial collagenase. Polyacrylamide gel electrophoresis of the acetylated protein showed that the radioactivity was present in the three bands corresponding to the α, β, and γ components of collagen. The rate of release of 14C from labeled collagen by Clostridium histolyticum collagenase was proportional to enzyme and substrate concentration.  相似文献   

4.
Bone explants from foetal and newborn rabbits synthesize and release a collagenase inhibitor into culture media. Inhibitor production in the early days of culture is followed first by latent collagenase and subsequently active collagenase in the culture media. A reciprocal relationship exists between the amounts of free inhibitor and latent collagenase in culture media, suggesting strongly that the inhibitor is a component of the latent form of the enzyme. Over 90% of the inhibitory activity of culture media is associated with a fraction of apparent mol.wt. 30000 when determined by gel filtration on Ultrogel AcA 44. The inhibitor blocks the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. It inhibits the action of either active collagenase or latent collagenase activated by 4-aminophenylmercuric acetate. Latent collagenase activated by trypsin is usually much less susceptible to inhibition. The activity of the inhibitor is destroyed by heat, by incubation with either trypsin or chymotrypsin and by 4-aminophenylmercuric acetate. Collagenase activity can be recovered from complexes of enzyme (activated with 4-aminophenylmercuric acetate) with free inhibitor by incubation with either trypsin or 4-aminophenylmercuric acetate, at concentrations similar to those that activate latent collagenase from culture media. The rabbit bone inhibitor does not affect the activity of bacterial collagenase, but blocks the action of collagenases not only from a variety of rabbit tissues but also from other mammalian species.  相似文献   

5.
The separation and further purification of human polymorphonuclear-leucocyte collagenase and gelatinase, using modifications of the method of Cawston & Tyler [(1979) Biochem J. 183, 647-656], are described. The final preparations yielded collagenase of specific activity 260 units/mg and gelatinase of specific activity 13 000 units/mg. Gelatinase was purified to apparent homogeneity in a latent form, and analysis of the activation of 125I-labelled latent enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel-filtration techniques suggested that no peptide material was lost on conversion into the active form. The purified natural inhibitors alpha 2-macroglobulin, tissue inhibitor of metalloproteinases ('TIMP') and amniotic-fluid inhibitor of metalloproteinases all inhibited the two polymorphonuclear-leucocyte metalloproteinases, but the last two inhibitors were slow to act and complete inhibition was difficult to attain. Collagenase degraded soluble types I and III collagen equally efficiently, but soluble type II collagen less well. Gelatinase alone had little activity on these substrates, although it enhanced the action of collagenase. Gelatinase was capable of degrading soluble types IV and V collagen at 25 degrees C, whereas collagenase was only active at higher temperatures when the collagens were susceptible to trypsin activity. By using tissue preparations of insoluble collagens (type I, II or IV) the activity of leucocyte collagenase was low and gelatinase activity was negligible, as measured by the solubilization of hydroxyproline-containing material. The two enzymes together were two or three times more effective in the degradation of these insoluble collagens.  相似文献   

6.
Two metallo-proteinases of human neutrophil leucocytes, collagenase and gelatinase, were studied. Collagenase specifically cleaved native collagen into the TCA and TCB fragments, whereas gelatinase degraded denatured collagen, i.e. gelatin, and the TCA fragments produced by collagenase. On subcellular fractionation by zonal sedimentation, collagenase was found to be localized in the specific granules, separate from gelatinase, which was recovered in smaller subcellular organelles known as C-particles. Neither enzyme was present in the azurophil granules, which contain the two major serine proteinases of neutrophils, elastase and cathepsin G. Collagenase and gelatinase were separated by gel filtration from extracts of partially purified granules. Both enzymes were found to occur in latent forms and were activated either by trypsin or by 4-aminophenylmercuric acetate. Gelatinase was also activated by cathepsin G, which, however, destroyed collagenase. Both enzymes were destroyed by neutrophil elastase. Activation resulted in a decrease by 25 000 in the apparent mol. wt. of both latent metallo-proteinases.  相似文献   

7.
A highly sensitive assay for vertebrate collagenase has been developed using [14C]proline- or [3H]proline-labeled collagen as soluble substrate. The substrate was easy to prepare, gave high specific activity (1.4 X 10(6) cpm/mg collagen), and was stable at -20 degrees C for a long period. The digestion reaction for the assay was done at 21 degrees C to minimize the cleavage of collagen by proteases other than collagenase and to protect the 3/4 and 1/4 cleavage fragments of collagen from being further attacked by proteases. The cleaved products were denatured and then separated from undigested native collagen by precipitation with 1 M NaCl at pH 3.5. The conditions selected for denaturation and separation gave better discrimination between the cleaved products and uncleaved substrate than did conditions used in some other assays. The digestion products can be examined further by gel electrophoresis at the end of the assay to confirm the activity of vertebrate collagenase. This assay can also be adapted to assess telopeptidase activity independently of collagenase activity.  相似文献   

8.
The homologous proteinase inhibitors, human alpha 2-macroglobulin (alpha 2M) and chicken ovostatin, have been compared with respect to their "bait" region sequences and interactions with two human matrix metalloproteinases, collagenase and stromelysin. A stretch of 34 amino acid residues of the ovostatin bait region sequence was determined and the matrix metalloproteinase cleavage sites identified. Collagenase cleaved a X-Leu bond where X was unidentified, whereas the major cleavage site by stromelysin was at the Gly-Phe bond, 4 residues on the COOH-terminal side of the collagenase cleavage site. Collagenase cleaved the alpha 2M bait region at the Gly679-Leu680 bond, and stromelysin at Gly679-Leu680 and Phe684-Tyr685 bonds. Sequence similarity in the bait region of members of the alpha-macroglobulin family is strikingly low. The kinetic studies indicate that alpha 2M is a 150-fold better substrate for collagenase than type I collagen. Structural predictions based on the bait region sequences suggest that a collagen-like triple helical structure is not a prerequisite for the efficient binding of tissue collagenase to a substrate. The binding of stromelysin to alpha 2M is slower than that of collagenase. Stromelysin reacts with ovostatin even more slowly. Despite the preference of chicken ovostatin for metalloproteinases, human alpha 2M, a far less selective inhibitor, reacts more rapidly with collagenase and stromelysin. These results suggest that alpha 2M may play an important role in regulating the activities of matrix metalloproteinases in the extracellular space.  相似文献   

9.
Collagenase cleavage of human Type II and III collagens has been studied using a highly purified preparation of rabbit tumor collagenase. Progress of the reactions in solution was followed by viscometry and the results indicated that under the conditions employed Type III collagen molecules were cleaved at approximately five times the rate of Type II molecules. Cleavage products of the reactions were isolated in denatured form by agarose molecular sieve chromatography. The molecular weights and amino acid compositions of the products demonstrated that Type II and III molecules had been cleaved at the characteristic three-quarter, one-quarter locus, giving rise to a large fragment derived from the NH2-terminal portion of the molecule and a smaller fragment representing the COOH-terminal region. The amino acid sequence at the NH2-terminal portion of the smaller fragment derived from Type II collagen was determined to be Ile-Ala-Gly-Gln-Arg, and the corresponding region from Type III collagen was found to have the sequence Leu-Ala Gly-Leu-Arg. These sequences for alpha1(II) and alpha1(III) chains adjacent to the site of collagenase cleavage along with previous data for alpha1(I) and alpha2 chains indicate that the minimum specific sequence required for collagenase cleavage is Gly-Ile-Ala or Gly-Leu-Ala. Inspection of the available sequence data for collagen alpha chains indicates that the latter sequences are found in at least three additional locations at which collagenase cleavage does not occur. Each of the sequences which are apparently not substrates for collagenase, however, are followed by a Gly-X-Hyp sequence. We suggest, then, that a minimum of five residues in collagen alpha chains COOH-terminal to the cleavage site comprise the substrate recognition site.  相似文献   

10.
The collagenase from the larvae Hypoderma lineatum, with a molecular weight of 24 000 and isoelectric point of 4.1, was obtained in homogeneous form by ion-exchange chromatography. It is stoichiometrically inhibited by diisopropylfluorophosphate. On the other hand it is unaffected by ethylenediaminetetraacetate, p-chloromercuribenzoate, dithiothreitol, N-tosyllysine chloromethyl ketone, N-tosylphenylalanine chloromethyl ketone and ovomucoid trypsin inhibitor. The enzyme which degrades native collagen in its helical parts, has a specific activity on thermally reconstituted collagen fibrils of 150 micrograms collagen degraded x min-1 x (mg enzyme)-1 at 37 degrees C. It hydrolyses casein but has no esterolytic activity characteristic of trypsin, chymotrypsin nor elastase. It has no action on the synthetic peptide 4-phenylazobenzyloxycarbonyl-L-prolyl-L-leucyl-L-glycyl-L-prolyl-D-arginine. The amino acid composition of Hypoderma collagenase indicates a distinct similarity with the serine proteinases of the trypsin family and with another athropode serine collagenase, that of the fiddler crab Uca pugilator. This suggests that eucaryotic collagenases with digestive rather than morphogenic function represent a new category of members of the trypsin family.  相似文献   

11.
The production of collagenase has been examined in primary cultures of multicellular epithelial organoids and of stromal cells isolated from DMBA-induced mammary tumors of the rat. Plastic culture dishes and dishes coated with collagen fibrils were used to study the effect of such a substrate on collagenase release. Cultures of 51-μm epithelial organoids consisted of cuboidal cells and a myoepithelial-like cell type which formed a continuous layer under the cuboidal cells. A transient low production of collagenase with an apparent molecular weight (MW) of 72 kD was detected on both substrates. Upon separation by trypsin only cuboidal cells released collagenase. Cultures of 27-μm organoids contained only few myoepithelial-like cells. On plastic, they formed dense monolayers of cuboidal cells and released more collagenase than the greater aggregates. On collagen fibrils, these organoids formed cords and ridges and collagenase production was about 4- to 6-fold higher. These results indicate that collagenase release is influenced by the nature of the interaction of cuboidal cells with the substrate on which they grow. Similar organoids prepared from virgin mammary glands failed to secrete collagenase on either substrate. Primary cultures of stromal cells derived from tumor tissues comprised one basic cell type that expressed a series of properties characteristic for monocytes/macrophages. These cultures were capable of producing collagenase with an apparent MW of 56 kD. Collagenase with a similar size was detected in the extracts of 51 from 65 mammary tumors.  相似文献   

12.
Previous studies demonstrated that the thermal stability of the procollagen triple helix can be assayed by digesting the protein for short periods with high concentrations of trypsin and chymotrypsin. Here we cleaved human type I procollagen or collagen with vertebrate collagenase to generate A fragments from the three-quarter amino termini and B fragments from the one-quarter carboxy termini of the molecules. The thermal stabilities of the fragments were then assayed by rapid trypsin/chymotrypsin digestion. Both fragments were resistant up to 36 degrees C and completely degraded between 37 degrees C and 39 degrees C. In subsequent experiments the same assay was carried out with type I procollagens synthesized by fibroblasts from two patients with lethal variants of osteogenesis imperfecta. With one, the A fragments were selectively destabilized, an observation consistent with previous data indicating that the mutation in the patient produced a deletion of 84 amino acids from the middle of the alpha 1(I) chain. With procollagen synthesized by fibroblasts from the second patient the B fragments were selectively destabilized, an observation consistent with preliminary data indicating a mutation that alters the primary structure of the carboxy-terminal region of the alpha 1(I) chain. Therefore, the procedures described here present a simple and direct method for locating mutations that destabilize the collagen triple helix.  相似文献   

13.
Collagenase of human basal cell epithelioma was purified by sequential ammonium sulfate precipitation, Sephadex gel filtration and affinity chromatography on collagen-polyacrylamide gel. The collagenase, when partially purified, was found to have an approximate molecular weight of 50,000. The purified enzyme contained no caseinolytic activity. On polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band. The purified collagenase cleaved native acid-soluble guinea pig skin collagen at 37 degrees C with a pH optimum of 8. The enzyme was inhibited by EDTA, cysteine, and human serum but not by soybean trypsin inhibitor. Heparin did not stimulate the enzyme activity. Purified collagenase reduced the specific viscosity of native acid-soluble guinea pig skin collagen to 50 per cent of its original value at 27 degrees C. Polyacrylamide gel disc electrophoresis of the reaction products showed bands corresponding to alphaA, betaA, and alphaB fragments. Electron microscopic examination of SLS aggregates of the reaction products showed that the cleavage site by the enzyme was at a point 75 per cent from the "A" end (TCA75) and 25 per cent from the "B" end (TCB25) of the collagen molecule.  相似文献   

14.
A spectrophotometric collagenase assay   总被引:3,自引:0,他引:3  
A quantitative collagenase assay using Coomassie blue staining and microtiter spectrophotometry is described. Collagen is gelled and dried onto the bottom of microwells as substrate, washed, incubated with samples, washed again, and then stained. Absorbance at 590 nm increases linearly with increasing amounts of collagen in the range 5-40 micrograms. Bacterial and mammalian collagenases can be detected within 2 h, and 10 ng of bacterial collagenase may be detected in 16 h. For simple screening applications, activity may be detected by eye. The assay is safe, simple, fast, economical, and sensitive.  相似文献   

15.
Collagenase activity in fibroblasts is regulated by cytokines and the interaction with the extracellular matrix. In this study we demonstrate that fibroblasts cultured within a three-dimensional collagen gel show a strong induction of collagenase gene expression. In addition to increased de novo synthesis most of the secreted enzyme was found to be activated leading to a high collagenolytic activity and complete degradation of collagen matrices after removal of fetal calf serum. Collagen I gene expression was found to be reduced under these conditions. These data suggest a specific modulation of cellular metabolism in response to contact with a three-dimensional collagenous matrix resulting in the divergent regulation of collagen and collagenase.  相似文献   

16.
A spectroscopic collagenase assay using peroxidase-labeled collagen   总被引:1,自引:0,他引:1  
A quantitative collagenase assay detecting soluble collagen fragments is described in this paper. Using the reagent N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) type I collagen was conjugated with horseradish peroxidase (POD) which was employed as a reporter enzyme. POD was preferentially linked to the TC B fragment in a ratio of 1.4 mol POD/mol collagen. The conjugation product was immobilized on AH-Sepharose via carbodiimide coupling to form the final collagenase substrate used in the assay. POD activity in the supernatants caused by liberated TC B fragments exhibited a linear relationship for collagenase concentrations up to 100 micrograms/ml bacterial collagenase. Over an incubation period of 4 h the lowest detection limits found were 20 ng/100 microliters for bacterial collagenase and 60 ng/100 microliters for human leukocyte collagenase. Incubation of the assay mixture with 5 micrograms trypsin resulted in 3.8% of the activity released by the equivalent amount of leukocyte collagenase. The assay developed here has been shown to be sensitive and specific for collagenase, with the additional advantage that this method is suited for simple and economic handling.  相似文献   

17.
Collagenase and collagenolytic cathepsin in normal and fibrotic rat liver   总被引:2,自引:0,他引:2  
Collagenase and collagenolytic cathepsin activities in normal and carbon tetrachloride-induced fibrotic livers of rats were simultaneously determined at 35 and 25 degrees C for 18 h, using the same 14C-labeled neutral soluble collagen as a substrate. Collagenolytic cathepsin had higher activity under the assay conditions at both 35 and 25 degrees C than collagenase in normal and fibrotic livers. On sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis, the collagen was visibly degraded by collagenolytic cathepsin, but not by collagenase. These results indicate that, unlike collagenase, collagenolytic cathepsins exist as active forms in the rat liver, and can participate in the degradation of collagens, especially of soluble collagens including procollagens.  相似文献   

18.
A synthetic collagenase substrate containing the internal peptide sequence--Gly-Gly-Pro-Leu-Gly-Pro-Pro-Gly-Pro--has been synthesized, with an N-terminus 4-((4-(dimethylamino)phenyl)azo)-benzoyl (DABCYL) group and C-terminus 5-[2-(acetamido)ethylamino] naphthalene-1-sulfonic acid (AEDANS) moiety resulting in internal quenching of AEDANS fluorescence. Peptide bond hydrolysis results in a large increase in fluorescence at 490 nm upon excitation at 336 nm. The substrate is cleaved exclusively by Clostridium histolyticum collagenase and is completely resistant to attack by proteases like thermolysin, proteinase K, and trypsin. K(m) and V(max) values for substrate hydrolysis by collagenase have been determined, establishing the peptide as one of the best binding substrates for the enzyme. MALDI mass spectrometry using a derivative of the substrate establishes that the sites of cleavage lie within the collagen like domain. The CD spectrum of an analog peptide lacking the donor and acceptor groups reveals spectral features that are reminiscent of weak polyproline structures.  相似文献   

19.
The U937 cell line is a monoblast-like cell line that can be induced to differentiate when treated with phorbol ester or a variety of other agents. Collagenase was detected in the media of U937 cell cultures after treatment with phorbol myristate acetate (PMA) at concentrations of 5 ng/mL or greater. In general, no collagenase was detected in the media of untreated cells. The induced collagenase cleaved native type I collagen into the 3/4 and 1/4-length fragments and showed the inhibition by ethylenediaminetetraacetic acid characteristic of the action of mammalian collagenases. Collagenase activity could be detected in the media of treated cells 12-18 h after the addition of PMA. Secretion of collagenase continued for 2-3 days after PMA addition. The production of collagenase by PMA-treated U937 cells was inhibited by actinomycin D and cycloheximide, suggesting that the induction of the enzyme is the result of de novo synthesis. The collagenase secreted by U937 cells induced with PMA has been purified 12-fold by using DEAE-Sephacel followed by wheat germ agglutinin-agarose chromatography. The apparent molecular mass of this U937 collagenase, determined by gel filtration chromatography on the partially purified enzyme, was 29-36 kilodaltons.  相似文献   

20.
The collagen substrate specificity of rat uterus collagenase   总被引:4,自引:0,他引:4  
The collagen substrate specificity of rat uterus collagenase was studied as a function of both collagen type and species of substrate origin. For each collagen examined, values for the basic kinetic parameters, Km and Vmax (kcat), were determined on collagen in solution at 25 degrees C. In all cases, Lineweaver-Burk plots were linear and rat uterus collagenase behaved as a normal Michaelis-Menten enzyme. Collagen types I, II, and III of all species tested were degraded by rat uterus collagenase. Collagen types IV and V were resistant to enzymatic attack. Both enzyme-substrate affinity and catalytic rates were very similar for all susceptible collagens (types I-III). Values for Km ranged from 0.9 to 2.5 X 10(-6) M. Values for kcat varied from 10.7 to 28.1 h-1. The homologous rat type I collagen was no better a substrate than the other animal species type I collagens. The ability of rat uterus collagenase to degrade collagen types I, II, and III with essentially the same catalytic efficiency is unlike the action of human skin fibroblast collagenase or any other interstitial collagenase reported to date. The action of rat uterus collagenase on type I collagen was compared to that of human skin fibroblast collagenase, with regard to their capacity to cleave collagen as solution monomers versus insoluble fibrils. Both enzymes had essentially equal values for kcat on monomeric collagen, yet the specific activity of the rat uterus collagenase was 3- to 6-fold greater on collagen fibrils than the skin fibroblast enzyme. Thus, in spite of their similar activity on collagen monomers in solution, the rat uterus collagenase can degrade collagen aggregated into fibrils considerably more readily than can human skin fibroblast collagenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号