首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Summary A novel mutation, FruS localised in the fru operon was obtained. It uncouples expression of the genes determining synthesis of the fructose-specific transport proteins and fructose- l-phosphate kinase. In FruS bacteria the fruA and fruF genes (coding for Enzyme IIfru and FPr, respectively) are constitutive by expressed while fruK (encoding fructose-1-phosphate kinase) remains inducible. In contrast to other mutations, which render expression of the whole fru operon constitutive, the FruS mutation: (1) does not lead to d-xylitol sensitivity; (2) does not inhibit growth on D-lactate, pyruvate and l-alanine; (3) does not decrease phosphoenolpyruvate (PEP) synthase activity.  相似文献   

4.
Once a permeability barrier is overcome, proflavin is highly mutagenic for Salmonella typhimurium and Escherichia coli. Mutagenesis of the his operon (in Salmonella) and lac operon (in E. coli) depends on derepression of the respective operons. No proflavin mutagenesis was detected in rec? strains. Over 100 proflavin-induced his mutants have been classified: 50% are base substitution types, 30% are stable (10% demonstrably multisite), and only 20% are probably frameshift mutations. None of the proflavin-induced frameshift mutations is of the type previously shown to be suppressed by frameshift suppressor mutations.  相似文献   

5.
6.
Male sexual behavior in Drosophila melanogaster, largely controlled by the fruitless (fru) gene encoding the male specific FruM protein, is among the best studied animal behaviors. Although substantial studies suggest that FruM specifies a neuronal circuitry governing all aspects of male sexual behaviors, recent findings show that FruM is not absolutely necessary for such behaviors. We propose that another regulatory gene doublesex encoding the male-specific DsxM protein builds a core neuronal circuitry that possesses the potential for courtship, which could be either induced through adult social experience or innately manifested during development by FruM expression in a broader neuronal circuitry. FruM expression levels and patterns determine the modes of courtship behavior from innate heterosexual, homosexual, bisexual, to learned courtship. We discuss how FruM expression is regulated by hormones and social experiences and tunes functional flexibility of the sex circuitry. We propose that regulatory genes hierarchically build the potential for innate and learned aspects of courtship behaviors, and expression changes of these regulatory genes among different individuals and species with different social experiences ultimately lead to behavioral diversification.  相似文献   

7.
The bacterial phosphoenolpyruvate (PEP)-dependent group translocation system (PTS) requires the presence of both membrane-bound and cytoplasmic components to phosphorylate and translocate sugar. Deinococcus radiodurans has a functional fruA gene coding for the membrane-bound components of the fructose-specific PTS. However, fruB gene coding for the fructose-specific cytosolic components of PTS is a pseudogene. Yet, this bacterium metabolized fructose readily. In vitro studies showed that both cell membranes and cytoplasmic fractions of the cells were needed for fructose phosphorylation. Further studies showed that fructose phosphorylation required ATP, not PEP, as the phosphate donor. Unlike most PEP-dependent PTS systems, fructose phosphorylation is sensitive to sodium fluoride, a kinase inhibitor. Fructose phosphorylation was also inhibited in the presence of antiserum against a kinase phosphorylation site. Rhodobacter capsulatus has a functional fruA–fruB system. Complementation assays by reconstituting the membrane fraction of D. radiodurans to the cytoplasmic fraction of R. capsulatus resulted in a PEP-dependent fructose phosphorylation, whereas mixing the membranes of R. capsulatus and the deinococcal cytosol in vitro resulted in an ATP-dependent fructose phosphorylation.  相似文献   

8.
9.
Mutational damage of the ptsH gene leads to pleiotropic disturbance of sugar utilization in Escherichia coli K12. A fruS mutation suppresses the defect because of a constitutional expression of the fruB and fruA genes. FruB protein possessing a pseudo-HPr activity replaces the HPr. It was shown that wild type allele fruS+ dominates over the fruS1156 mutation in heterozygous merodiploid. The existence of thermosensitive mutations (fruS4 and fruS12) which repair the ptsH damage was also demonstrated. The fruS mutations were located in the fru operon. Fructose utilization was not disturbed in fruS1156 mutant, but fruS2 and fruS12 mutants were unable to utilize fructose. Spontaneous mutations (fruS6 and fruS13) possessing the same phenotype at any temperature similar to the thermosensitive ones under nonpermissive conditions were isolated. They were mapped using the P1vir transduction. The fruS mutations were found in the structural gene of the fructose operon. Presumably it is the fruA gene that cods for the fructose-specific multidomain protein IIB'Bc of the phosphoenolpyruvate-dependent phosphotransferase system.  相似文献   

10.
11.
The Escherichia coli rnc-era-recO operon encodes ribonuclease III (RNase III; a dsRNA endonuclease involved in rRNA and mRNA processing and decay), Era (an essential G-protein of unknown function) and RecO (involved in the RecF homologous recombination pathway). Expression of the rnc and era genes is negatively autoregulated: RNase III cleaves the rncO ‘operator’ in the untranslated leader, destabilizing the operon mRNA. As part of a larger effort to understand RNase III and Era structure and function, we characterized rnc operon structure, function and regulation in the closely related bacterium Salmonella typhimurium. Construction of a S typhimurium strain conditionally defective for RNase III and Era expression showed that Era is essential for cell growth. This mutant strain also enabled selection of recombinant clones containing the intact S typhimurium rnc-era-recO operon, whose nucleotide sequence, predicted protein sequence, and predicted rncO RNA secondary structure were all highly conserved with those of E coli. Furthermore, genetic and biochemical analysis revealed that S typhimurium rnc gene expression is negatively autoregulated by a mechanism very similar or identical to that in E coli, and that the cleavage specificities of RNase IIIS.t. and RNase IIIE.c. are indistinguishable with regard to rncO cleavage and S typhimurium 23S rRNA fragmentation in vivo.  相似文献   

12.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIABMan, two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIABMan, IICMan, IIDMan, and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIABMan as well as membrane fragments containing IICMan and IIDMan. These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIABMan.  相似文献   

13.
Summary U.V. irradiation experiments have been performed with three tyr-leu- diauxotrophs of E. coli B/r; 36-10, 36-18 and 36-32. These have in common the tyr- marker WU-36. Three types of mutations were scored; tyr+leu-, tyr-leu+, and tyr+leu+. The percentages of total mutants scored which are of the tyr+leu+ type depend, firstly, on the strain. The tyr+leu+ revertants are rare in 36-10 and common in 36-18 and 36-32. Secondly, the percentages of tyr+leu+ among total revertants are determined by the nature of the plating medium, being altered by supplementation with a low level of the required amino acids, a low level of nutrient broth, or by caffeine. These differential effects upon tyr+leu+ and tyr+leu- or tyr-leu+ reversions can be interpreted at the levels of dark-repair and the later stages in the process leading to phenotypic expression. It is suggested that states of repression and derepression may be implicated in determining susceptibility of lesions in suppressor loci to repair processes. Phenotypically different classes of mutations have different pathways leading to final expression.This work was initiated in Dr. Ruth F. Hill's laboratory, Department of Radiology, Columbia University, New York.  相似文献   

14.
We have used the toxic non-metabolizabie glucose/ mannose analogue 2-deoxygiucose to isolate a comprehensive collection of mutants of the phosphoenoipyruvate:sugar phosphotransferase system from Streptococcus salivarius. To increase the range of possible mutations, we isolated spontaneous mutants on different media containing 2-deoxyglucose and various metabolizable sugars, either lactose, meli-biose, galactose or fructose. We found that the frequency at which 2-deoxygiucose-resistant mutants Were isolated varied according to the growth substrate. The highest frequency was obtained with the combination galactose and 2-deoxygiucose and was 15-fold higher than the rate observed with the mixture melibiose and 2-deoxygiucose, the combination that gave the lowest frequency. By combining results from: (i) Western biol analysis of IIIMan, a specific component of the phosphoenolpyruvate:mannose phosphotransferase system in S. salivarius; (ii) rocket immunoelectrophoresis of HPr and EI, the two general energy-coupling proteins of the phosphotransferase system; and (iii) from gene sequencing, mutants could be assigned to seven classes. Class 1 was composed of strains devoid of IIIManL, a low-molecular-weight form of IIIManL (35200), class 2 was composed of strains exhibiting a reduced level of IIIManL, class 3 was composed of strains devoid of both forms of IIIMan (IIIManL as well as IIIManH, the high-molecular-weight form of IIIMan (38900)), class 4 was composed of mutants bearing a mutation in ptsH, the gene encoding HPr, class 5 was composed of mutants bearing a mutation in ptsl, the gene encoding EI, class 6 was composed of 2-deoxygiucose-resistant strains without any apparent defect in PTS components, and class 7 was composed of strains possessing both forms of IIIMan but abnormal levels of HPr and/or EI without any mutation in the ptsH and/or the ptsI genes. Preliminary characterization of representative strains of each class is reported.  相似文献   

15.
Summary Two mutants, unable to utilize fructose (Fru) as a sole source of carbon and energy, were isolated fromZymomonas mobilis following ethyl methane sulfonate (EMS) mutagenesis. The frequency of stable Fru mutants among survivors of mutagenesis was 1 in 104. The two Fru mutants were able to cleave sucrose to glucose and fructose, and then ferment only the glucose to ethanol while accumulating fructose close to the theoretical value. Under controlled fermentation conditions, sucrose was converted to ethanol plus 80% or higher purity fructose syrup in a single-stage batch fermentation process, improving the Sucrotech Process significantly.  相似文献   

16.
17.
18.
Enzyme IIA and HPr are central regulatory proteins of the bacterial phosphoenolpyruvate:sugar phosphotransferase (PTS) system. Three-dimensional structures of the glucose enzyme IIA domain (IIAglc) and HPr of Bacillus subtilis and Escherichia coli have been studied by both X-ray crystallography and Nuclear Magnetic Resonance (NMR) Spectroscopy. Phosphorylation of HPr of B. subtilis and IIAglc of E. coli have also been characterized by NMR spectroscopy. In addition, the binding interfaces of B. subtilis HPr and IIAglc have been identified from backbone chemical shift changes. This paper reviews these recent advances in the understanding of the three-dimensional structures of HPr and IIAglc and their interaction with each other. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The scr regulon of pUR400 and the chromosomally encoded scr regulon of Klebsiella pneumoniae KAY2026 are both negatively controlled by a specific repressor (ScrR). As deduced from the nucleotide sequences, both scrR genes encode polypeptides of 334 residues (85.5% identical base pairs, 91.3% identical amino acids), containing an N-terminal helix-turn-helix motif. Comparison with other regulatory proteins revealed 30.6% identical amino acids to FruR, 27.0% to Lacl and 28.1% to GaIR. Six scrRs super-repressor mutations define the inducer-binding domain. The scr operator sequences were identified by in vivo titration tests of the sucrose repressor and by in vitro electrophoretic mobility shift assays. D-fructose, an intracellular product of sucrose transport and hydrolysis, and D-fructose 1-phosphate were shown to be molecular inducers of both scr regulons. An active ScrR–FruR hybrid repressor protein was constructed with the N-terminal part of the sucrose repressor of K. pneumoniae and the C-terminal part of the fructose repressor of Salmonella typhimurium, LT2. Gel retardation assays showed that the hybrid protein bound to scr-specific operators, and that D-fructose 1-phosphate, the inducer for FruR, was the only inducer. In vivo, neither the operators of the fru operon nor of the pps, operon, the natural targets for FruR, were recognized, but the scr operators were. These data and the data obtained from the super-repressor alleles confirm previous models on the binding of repressors of the Lacl family to their operators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号