首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Chandonia  M Karplus 《Proteins》1999,35(3):293-306
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.  相似文献   

2.
The secondary structure of the purified glucosamine-6-phosphate deaminase from Escherichia coli K12 was investigated by both circular dichroism (CD) spectroscopy and empirical prediction methods. The enzyme was obtained by allosteric-site affinity chromatography from an overproducing strain bearing a pUC18 plasmid carrying the structural gene for the enzyme. From CD analysis, 34% of alpha-helix, 9% of parallel beta-sheet, 11% of antiparallel beta-sheet, 15% turns and 35% of non-repetitive structures, were estimated. A joint prediction scheme, combining six prediction methods with defined rules using several physicochemical indices, gave the following values: alpha-helix, 37%; beta-sheet, 22%; turns, 18% and coil, 23%. The structure predicted showed also a considerable degree of alternacy of alpha and beta structures; 64% of helices are amphipathic and 90% of beta-sheets are hydrophobic. Overall, the data suggest that deaminase has as dominant motif, an alpha/beta structure.  相似文献   

3.
Paired intercellular transmembrane channels, termed connexons, comprised of hexameric assemblies of gap junction protein, were isolated and purified from rat liver by exploiting their resistance to either Sarkosyl detergent solubilization or alkali extraction. The secondary structures of the gap junction proteins prepared by these methods were compared by circular dichroism (CD) spectroscopy. Both the spectra and the calculated net secondary structures of the proteins obtained by the two isolation methods were different. The protein isolated by the Sarkosyl treatment was found to be approximately 50% alpha-helical, while protein isolated by alkali extraction had a lower helix content (approximately 40%). In both types of preparations, however, the helical content of the gap junction protein was sufficiently large to be consistent with an all-helical model for the membrane-spanning parts of the structure. CD spectroscopy was also used to examine the effects of proteolytic digestion of the cytoplasmic domain on the net secondary structure of the detergent-treated gap junction protein. The membrane-bound fragments had a slightly higher proportion of their residues that were alpha-helical in nature, suggesting that the transmembrane and/or intra-gap domains are indeed enriched in this type of secondary structure. This information constrains the range of models which can be realistically proposed for the channel structure.  相似文献   

4.

Background  

Circular dichroism spectroscopy is a widely used technique to analyze the secondary structure of proteins in solution. Predictive methods use the circular dichroism spectra from proteins of known tertiary structure to assess the secondary structure contents of a protein with unknown structure given its circular dichroism spectrum.  相似文献   

5.
The secondary structure of bacterio-opsin (BO), the retinal free protein-component of bacteriorhodopsin (BR), has been determined by Raman spectroscopy. Additional circular dichroism (CD) measurements have revealed only negligible conformational differences between BO in apomembranes and BR in purple membranes. Therefore, the secondary structure of BR was derived from the Raman data of BO. The protein conformation was determined to consist of 72-82% helices, 2-11% beta-strands, and 11-17% beta-turns. Only about half of the helical structures correspond to alpha 1-helices, the other half possess non-alpha 1-helical structures. According to the analysis of the Raman data, the derived secondary structure of BR was obtained with high reliability for all structure classes which can be distinguished by this method within the given uncertainty range. This is a remarkable difference from recently published secondary structural data derived from CD measurements where the helix content was reported to be between 50 and 80%. The inherent experimental and methodological uncertainties of the CD-technique leading to such a range of variation are critically discussed in comparison to the method of Raman spectroscopy. The combined application of Raman and CD spectroscopy, as performed here, is demonstrated to be a substantial improvement in the secondary structure determination of retinal-containing membrane proteins. On the basis of our results, some of the recently proposed structural models of BR with a beta-strand content of more than 11% can be ruled out.  相似文献   

6.
Recent developments in instrumentation and bioinformatics show that the technique of synchrotron radiation circular dichroism spectroscopy can provide novel information on protein secondary structures and folding motifs, and has the potential to play an important role in structural genomics studies, both as a means of target selection and as a high-throughput, low-sample-requiring screening method. This is possible because of the additional information content in the low-vacuum ultraviolet wavelength data obtainable with intense synchrotron radiation light sources, compared with that present in spectra from conventional lab-based circular dichroism instruments.  相似文献   

7.
近几年来,圆二色光谱在蛋白质结构研究中的应用越来越广泛。通过对远紫外圆二色光谱的测量,可以推导出稀溶液中蛋白质的二级结构,进而分析和辨别蛋白质的三级结构类型;通过对近紫外圆二色光谱的测量和分析,可以推断蛋白质分子中芳香氨基酸残基和二硫键的微环境变化,研究介质与蛋白质结构间的关系;通过测定实验参数和环境条件变化时的圆二色光谱,可以研究蛋白质构像变化过程中的热力学和动力学特性。  相似文献   

8.
Here we report the development of a new neural network based approach for rapid quantification of protein secondary structure from Fourier transform infrared (FTIR) spectra of proteins. A technique for efficiently reducing the amount of spectral data by almost 90% is suggested to facilitate faster neural network analysis. Additionally, an automatic procedure is introduced for selecting only those regions within the amide I band of protein FTIR spectra, which can be best related to secondary structure contents by subsequent neural network analysis. Based on a given reference set of FTIR spectra from proteins with known secondary structure, a subset of merely 29 out of 101 amide I absorbance values could be identified, which lead to an improved prediction accuracy. The average prediction accuracy achieved for helix, sheet, turn, bend, and other is 4.96% which is better than that achieved by alternative methods that have been previously reported indicating the significant potential of this approach. Our suggested automatic amide I frequency selection procedure may be easily extended to identify promising regions from spectral data recorded by other spectroscopic techniques, like for example circular dichroism spectroscopy.  相似文献   

9.
Using evolutionary information contained in multiple sequence alignments as input to neural networks, secondary structure can be predicted at significantly increased accuracy. Here, we extend our previous three-level system of neural networks by using additional input information derived from multiple alignments. Using a position-specific conservation weight as part of the input increases performance. Using the number of insertions and deletions reduces the tendency for overprediction and increases overall accuracy. Addition of the global amino acid content yields a further improvement, mainly in predicting structural class. The final network system has a sustained overall accuracy of 71.6% in a multiple cross-validation test on 126 unique protein chains. A test on a new set of 124 recently solved protein structures that have no significant sequence similarity to the learning set confirms the high level of accuracy. The average cross-validated accuracy for all 250 sequence-unique chains is above 72%. Using various data sets, the method is compared to alternative prediction methods, some of which also use multiple alignments: the performance advantage of the network system is at least 6 percentage points in three-state accuracy. In addition, the network estimates secondary structure content from multiple sequence alignments about as well as circular dichroism spectroscopy on a single protein and classifies 75% of the 250 proteins correctly into one of four protein structural classes. Of particular practical importance is the definition of a position-specific reliability index. For 40% of all residues the method has a sustained three-state accuracy of 88%, as high as the overall average for homology modelling. A further strength of the method is greatly increased accuracy in predicting the placement of secondary structure segments. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The secondary structure of the major neurotoxin from the sea snake Lapemis hardwickii was investigated by several methods of conformational analysis: structure prediction, circular dichroism, and laser Raman spectroscopy. From the primary structure, secondary structure prediction yielded two regions of β-sheet structure at residues 1–7 and 41–45. β-Turns were predicted at residues 14–17, 20–23, 30–33, 37–40, and 46–49. From the predictions, the toxin appears to be composed of approximately 20% β-sheet and 33% β-turn. The CD spectrum of the native toxin appears to be a hybrid of model spectra for β-sheet and β-turn proteins. The pH perturbation studies on the toxin observed by CD demonstrated that the toxin is a very stable molecule except at extremely high or low pH values. The Raman data indicated that the toxin contains both antiparallel β-sheet and β-turn structure. Using two methods of secondary structure quantitation from Raman spectra the molecule was calculated to contain 35% β-sheet from one method and 27% from the other. Overall, the various methods demonstrate that the toxin is composed of β-sheet and β-turn structure with little or no α-helix present. From the comparison of these different techniques appreciation can be gained for the necessity of several methods when identifying and quantitating secondary structure.  相似文献   

11.
The rapid increase in sequence data in combination with a greater understanding of the forces regulating protein structure has been the impetus for an upsurge in the development of theoretical prediction methods. These methods have afforded protein chemists the ability to identify and quantify the various secondary structures along the protein chain. Concurrently, various physico-chemical techniques have been developed such as nuclear Overhauser enhancement n.m.r. and laser Raman spectroscopy. In addition, traditional methods such as infrared and circular dichroism spectroscopy have been refined. Although both predictive and physico-chemical techniques are limited in the types of secondary structure they are capable of determining, they have provided valuable information with regards to protein folding and topology in the absence of X-ray data, and have formed the basis for the development of improved methods for secondary structure determination. This paper reviews some of the predictive and physico-chemical methods presently used to determine protein secondary structure.  相似文献   

12.
The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second-derivative ultraviolet absorption spectroscopy. The far-ultraviolet circular dichroic spectrum is characteristic of a protein of high beta-sheet and low alpha-helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53% beta-sheet, 10% alpha-helix and 37% beta-turn/loop secondary structure. Second-derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent-exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side-chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface-exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.  相似文献   

13.
The gene encoding the 67-kDa cocoa storage protein precursor has been cloned fromTheobroma cacaoand expressed inEscherichia coliusing the pET expression system. The recombinant storage protein has been renatured from inclusion bodies at 30°C using 20 m glycine–NaOH buffer, pH 10.0, containing 1 m oxidized glutathione and 0.1% Brij. The renatured protein was purified and demonstrated to adopt a stable native conformation by optical spectroscopy. Secondary structure analysis from circular dichroism indicated the protein to be 23% α-helix and 38% β-sheet, in close agreement with values obtained using a secondary structure prediction program.  相似文献   

14.
Covalently linked pairs of well-chosen peptides can be good model systems for protein folding studies because they can adopt stable secondary, side-chain, and tertiary structure under certain conditions. We demonstrate a method for characterizing the structure in such peptide pairs by hydrogen/deuterium exchange of individual amide groups analyzed by collision-induced dissociation tandem mass spectrometry, in concert with circular dichroism spectroscopy. We apply the method to two peptides (and their three possible pairs) from bovine pancreatic trypsin inhibitor to address specific hypotheses regarding the stabilization of local secondary structure by long-range interactions.  相似文献   

15.

Background  

A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available.  相似文献   

16.
A flavodoxin from Azotobacter vinelandii is chosen as a model system to study the folding of alpha/beta doubly wound proteins. The guanidinium hydrochloride induced unfolding of apoflavodoxin is demonstrated to be reversible. Apoflavodoxin thus can fold in the absence of the FMN cofactor. The unfolding curves obtained for wild-type, C69A and C69S apoflavodoxin as monitored by circular dichroism and fluorescence spectroscopy do not coincide. Apoflavodoxin unfolding occurs therefore not via a simple two-state mechanism. The experimental data can be described by a three-state mechanism of apoflavodoxin equilibrium unfolding in which a relatively stable intermediate is involved. The intermediate species lacks the characteristic tertiary structure of native apoflavodoxin as deduced from fluorescence spectroscopy, but has significant secondary structure as inferred from circular dichroism spectroscopy. Both spectroscopic techniques show that thermally-induced unfolding of apoflavodoxin also proceeds through formation of a similar molten globule-like species. Thermal unfolding of apoflavodoxin is accompanied by anomalous circular dichroism characteristics: the negative ellipticity at 222 nM increases in the transition zone of unfolding. This effect is most likely attributable to changes in tertiary interactions of aromatic side chains upon protein unfolding. From the presented results and hydrogen/deuterium exchange data, a model for the equilibrium unfolding of apoflavodoxin is presented.  相似文献   

17.
A new method based on neural network theory is presented to analyze and quantify the information content of far UV circular dichroism spectra. Using a backpropagation network model with a single hidden layer between input and output, it was possible to deduce five different secondary structure fractions (helix, parallel and antiparallel beta-sheet, beta-turn and random coil) with satisfactory correlations between calculated and measured secondary structure data. We demonstrate that for each wavelength interval a specific network is suitable. The remaining discrepancy between the secondary structure data from neural network prediction and crystallography may be attributed to errors in the determination of protein concentration and random noise in the CD signal, as indicated by simulations.  相似文献   

18.
FsrC is the membrane-bound histidine kinase component of the Fsr two-component signal transduction system involved in quorum sensing in the hospital-acquired infection agent Enterococcus faecalis. Synchrotron radiation circular dichroism spectroscopy was used here to study the intact purified protein solubilised in detergent micelles. Conditions required for FsrC stability in detergent were firstly determined and tested by prolonged exposure of stabilised protein to far-ultraviolet radiation. Using stabilised purified protein, far-ultraviolet synchrotron radiation circular dichroism revealed that FsrC is 61% α-helical and that it is relatively thermostable, retaining at least 57% secondary structural integrity at 90°C in the presence or absence of gelatinase biosynthesis-activating pheromone (GBAP). Whilst binding of the quorum pheromone ligand GBAP did not significantly affect FsrC secondary structure, near-ultraviolet spectra revealed that the tertiary structure in the regions of the Tyr and Trp residues was significantly affected. Titration experiments revealed a calculated k(d) value of 2μM indicative of relatively loose binding of gelatinase biosynthesis-activating pheromone to FsrC. Although use of synchrotron radiation circular dichroism has been applied to membrane proteins previously, to our knowledge this is the first report of its use to determine a k(d) value for an intact membrane protein. Based on our findings, we suggest that synchrotron radiation circular dichroism will be a valuable technique for characterising ligand binding by other membrane sensor kinases and indeed other membrane proteins in general. It further provides a valuable screening tool for membrane protein stability under a range of detergent conditions prior to downstream structural methods such as crystallisation and NMR experiments particularly when lower detergent concentrations are used.  相似文献   

19.
We have used the circular dichroism and infrared spectra of a specially designed 50 protein database [Oberg, K.A., Ruysschaert, J.M. & Goormaghtigh, E. (2003) Protein Sci. 12, 2015-2031] in order to optimize the accuracy of spectroscopic protein secondary structure determination using multivariate statistical analysis methods. The results demonstrate that when the proteins are carefully selected for the diversity in their structure, no smaller subset of the database contains the necessary information to describe the entire set. One conclusion of the paper is therefore that large protein databases, observing stringent selection criteria, are necessary for the prediction of unknown proteins. A second important conclusion is that only the comparison of analyses run on circular dichroism and infrared spectra independently is able to identify failed solutions in the absence of known structure. Interestingly, it was also found in the course of this study that the amide II band has high information content and could be used alone for secondary structure prediction in place of amide I.  相似文献   

20.
A Perczel  K Park  G D Fasman 《Proteins》1992,13(1):57-69
A recently developed algorithm, called Convex Constraint Analysis (CCA), was successfully applied to determine the circular dichroism (CD) spectra of the pure beta-pleated sheet in globular proteins. On the basis of X-ray diffraction determined secondary structures, the original data set used (Perczel, A., Hollosi, M., Tusnady, G. Fasman, G.D. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Prot. Eng., 4:669-679, 1991), was improved by the addition of proteins with high beta-pleated sheet content. The analysis yielded CD curves of the pure components of the main secondary structural elements (alpha-helix, antiparallel beta-pleated sheet, beta-turns, and unordered conformation), as well as a curve attributed to the "aromatic contribution" in the wavelength range of 195-240 nm. Upon deconvolution the curves obtained were assigned to various secondary structures. The calculated weights (percentages determining the contributions of each pure component curve in the measured CD spectra of a given protein) were correlated with the X-ray diffraction determined percentages in an assignment procedure and were evaluated. The Pearson product correlation coefficients (R) are significant for all five components. The new pure component curves, which were obtained through deconvolution of the protein CD spectra alone, are promising candidates for determining the percentages of the secondary structural components in globular proteins without the necessity of adopting an X-ray database. The CD spectrum of the CheY protein was interesting because it has the characteristic shape associated with the alpha-helical structure, but upon analysis yielded a considerable amount of beta-sheet in agreement with the X-ray structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号