共查询到20条相似文献,搜索用时 0 毫秒
1.
Genes are major contributors to many psychiatric diseases, but their mechanisms of action have long seemed elusive. The intermediate phenotype concept represents a strategy for characterizing the neural systems affected by risk gene variants to elucidate quantitative, mechanistic aspects of brain function implicated in psychiatric disease. Using imaging genetics as an example, we illustrate recent advances, challenges and implications of linking genes to structural and functional variation in brain systems related to cognition and emotion. 相似文献
2.
Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders 总被引:11,自引:0,他引:11
Genomic disorders are a group of human genetic diseases caused by genomic rearrangements resulting in copy-number variation (CNV) affecting a dosage-sensitive gene or genes critical for normal development or maintenance. These disorders represent a wide range of clinically distinct entities but include many diseases affecting nervous system function. Herein, we review selected neurodevelopmental, neurodegenerative, and psychiatric disorders either known or suggested to be caused by genomic rearrangement and CNV. Further, we emphasize the cause-and-effect relationship between gene CNV and complex disease traits. We also discuss the prevalence and heritability of CNV, the correlation between CNV and higher-order genome architecture, and the heritability of personality, behavioral, and psychiatric traits. We speculate that CNV could underlie a significant proportion of normal human variation including differences in cognitive, behavioral, and psychological features. 相似文献
3.
4.
5.
6.
7.
Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females
下载免费PDF全文

Inoue K Osaka H Thurston VC Clarke JT Yoneyama A Rosenbarker L Bird TD Hodes ME Shaffer LG Lupski JR 《American journal of human genetics》2002,71(4):838-853
In the majority of patients with Pelizaeus-Merzbacher disease, duplication of the proteolipid protein gene PLP1 is responsible, whereas deletion of PLP1 is infrequent. Genomic mechanisms for these submicroscopic chromosomal rearrangements remain unknown. We identified three families with PLP1 deletions (including one family described elsewhere) that arose by three distinct processes. In one family, PLP1 deletion resulted from a maternal balanced submicroscopic insertional translocation of the entire PLP1 gene to the telomere of chromosome 19. PLP1 on the 19qtel is probably inactive by virtue of a position effect, because a healthy male sibling carries the same der(19) chromosome along with a normal X chromosome. Genomic mapping of the deleted segments revealed that the deletions are smaller than most of the PLP1 duplications and involve only two other genes. We hypothesize that the deletion is infrequent, because only the smaller deletions can avoid causing either infertility or lethality. Analyses of the DNA sequence flanking the deletion breakpoints revealed Alu-Alu recombination in the family with translocation. In the other two families, no homologous sequence flanking the breakpoints was found, but the distal breakpoints were embedded in novel low-copy repeats, suggesting the potential involvement of genome architecture in stimulating these rearrangements. In one family, junction sequences revealed a complex recombination event. Our data suggest that PLP1 deletions are likely caused by nonhomologous end joining. 相似文献
8.
Meyer C Kowarz E Schneider B Oehm C Klingebiel T Dingermann T Marschalek R 《Biotechnology journal》2006,1(6):656-663
Genomic DNA is the optimal resource to analyze questions concerning genetic changes that are related to oncogenesis. This article tries to summarize recent efforts to analyze chromosomal changes that trigger the development of human acute myeloid and lymphoblastic leukemias. The aim of this study was to establish an universal method that enables the identification and characterization of chromosomal translocations of the human MLL gene at the genomic nucleotide level. Chromosomal translocations of the MLL gene are the result of illegitimate recombination events in hematopoietic stem or precursor cells, strictly associated with the onset of highly malignant leukemic diseases. The applied technology was able to identify specific fusion alleles that were generated by chromosomal translocations, chromosomal deletions, chromosomal inversions and partial tandem duplications. Moreover, it allowed us to investigate even highly complex genetic changes by applying systematic breakpoint analyses. On the basis of these analyses, patient-specific molecular markers were established that turned out to be a very good source for monitoring minimal residual disease (MRD). MRD analyses control the efficiency and efficacy of current treatment protocols and have become a very sensitive molecular tool to monitor therapeutic success or failure in individual leukemia patients. 相似文献
9.
Evolution has shaped a wide variety of genomes across eukaryotic taxa. However, the forces that shape the genomes are generally unknown. Because organisms in nature commonly experience prolonged periods of nutrient depletion, we posit that diverse demographic, physiological, and genomic responses to starvation can occur. To test for these possibilities, we subjected replicate yeast populations to prolonged starvation. We observed that clones repeatedly gave rise to descendants that were karyotypically diverse. After a 1-month starvation period, approximately 70% of randomly isolated members of starved populations harbored one or more genomic rearrangements. Further, we found that 5 of 16 karyotypically differentiated groups of isolates from starved populations were more resilient to starvation than nonstarved clones and their common ancestor. Phylogenetic analysis of these isolates suggests that genomic rearrangements that arose during starvation can be adaptive in the context of a nutrient-depleted environment. Altogether our data illustrate the profound influence of environmental conditions on adaptive genome evolution in eukaryotes. 相似文献
10.
11.
Baranov VS 《Molekuliarnaia biologiia》2004,38(1):110-116
Molecular medicine is a new research field underlain by achievements of the Human Genome Project. The review considers the contribution of the Laboratory of Prenatal Diagnostics of the Ott Institute of Obstetrics and Gynecology to the development of molecular medicine in Russia. Special emphasis is placed on molecular diagnostics, predictive medicine, and gene therapy. The lab obtained priority results in devising and promoting methods of molecular diagnostics of the most common severe hereditary disorders such as cystic fibrosis, Duchenne muscular dystrophy, hemophilia A, and fragile X syndrome. Owing to the Russian program Human Genome, St. Petersburg researchers laid the foundations for theoretical and applied predictive medicine, which is aimed at identifying and analyzing the genes associated with predisposition to high-incidence multifactorial disorders. Experiments with mdx mice providing a model of Duchenne muscular dystrophy were carried out to select the optimal way of delivering a transgene (cDNA of the dystrophin gene) contained in various constructs for the purpose of gene therapy. 相似文献
12.
Kalupahana NS Moustaid-Moussa N 《Critical reviews in biochemistry and molecular biology》2012,47(4):379-390
The renin-angiotensin system (RAS) is classically known for its role in regulation of blood pressure, fluid and electrolyte balance. In this system, angiotensinogen (Agt), the obligate precursor of all bioactive angiotensin peptides, undergoes two enzymatic cleavages by renin and angiotensin converting enzyme (ACE) to produce angiotensin I (Ang I) and angiotensin II (Ang II), respectively. The contemporary view of RAS has become more complex with the discovery of additional angiotensin degradation pathways such as ACE2. All components of the RAS are expressed in and have independent regulation of adipose tissue. This local adipose RAS exerts important auto/paracrine functions in modulating lipogenesis, lipolysis, adipogenesis as well as systemic and adipose tissue inflammation. Mice with adipose-specific Agt overproduction have a 30% increase in plasma Agt levels and develop hypertension and insulin resistance, while mice with adipose-specific Agt knockout have a 25% reduction in Agt plasma levels, demonstrating endocrine actions of adipose RAS. Emerging evidence also points towards a role of RAS in regulation of energy balance. Because adipose RAS is overactivated in many obesity conditions, it is considered a potential candidate linking obesity to hypertension, insulin resistance and other metabolic derangements. 相似文献
13.
Ewald IP Ribeiro PL Palmero EI Cossio SL Giugliani R Ashton-Prolla P 《Genetics and molecular biology》2009,32(3):437-446
Women with mutations in the breast cancer genes BRCA1 or BRCA2 have an increased lifetime risk of developing breast, ovarian and other BRCA-associated cancers. However, the number of detected germline mutations in families with hereditary breast and ovarian cancer (HBOC) syndrome is lower than expected based upon genetic linkage data. Undetected deleterious mutations in the BRCA genes in some high-risk families are due to the presence of intragenic rearrangements such as deletions, duplications or insertions that span whole exons. This article reviews the molecular aspects of BRCA1 and BRCA2 rearrangements and their frequency among different populations. An overview of the techniques used to screen for large rearrangements in BRCA1 and BRCA2 is also presented. The detection of rearrangements in BRCA genes, especially BRCA1, offers a promising outlook for mutation screening in clinical practice, particularly in HBOC families that test negative for a germline mutation assessed by traditional methods. 相似文献
14.
《Critical reviews in biochemistry and molecular biology》2013,48(4):379-390
The renin-angiotensin system (RAS) is classically known for its role in regulation of blood pressure, fluid and electrolyte balance. In this system, angiotensinogen (Agt), the obligate precursor of all bioactive angiotensin peptides, undergoes two enzymatic cleavages by renin and angiotensin converting enzyme (ACE) to produce angiotensin I (Ang I) and angiotensin II (Ang II), respectively. The contemporary view of RAS has become more complex with the discovery of additional angiotensin degradation pathways such as ACE2. All components of the RAS are expressed in and have independent regulation of adipose tissue. This local adipose RAS exerts important auto/paracrine functions in modulating lipogenesis, lipolysis, adipogenesis as well as systemic and adipose tissue inflammation. Mice with adipose-specific Agt overproduction have a 30% increase in plasma Agt levels and develop hypertension and insulin resistance, while mice with adipose-specific Agt knockout have a 25% reduction in Agt plasma levels, demonstrating endocrine actions of adipose RAS. Emerging evidence also points towards a role of RAS in regulation of energy balance. Because adipose RAS is overactivated in many obesity conditions, it is considered a potential candidate linking obesity to hypertension, insulin resistance and other metabolic derangements. 相似文献
15.
16.
Genome architecture, rearrangements and genomic disorders 总被引:35,自引:0,他引:35
An increasing number of human diseases are recognized to result from recurrent DNA rearrangements involving unstable genomic regions. These are termed genomic disorders, in which the clinical phenotype is a consequence of abnormal dosage of gene(s) located within the rearranged genomic fragments. Both inter- and intrachromosomal rearrangements are facilitated by the presence of region-specific low-copy repeats (LCRs) and result from nonallelic homologous recombination (NAHR) between paralogous genomic segments. LCRs usually span approximately 10-400 kb of genomic DNA, share >or= 97% sequence identity, and provide the substrates for homologous recombination, thus predisposing the region to rearrangements. Moreover, it has been suggested that higher order genomic architecture involving LCRs plays a significant role in karyotypic evolution accompanying primate speciation. 相似文献
17.
M A Surani 《Current opinion in genetics & development》1991,1(2):241-246
Imprinting results in the preferential expression of either the maternal or the paternal allele of certain genes, and has a critical influence on the regulation of mammalian development. The identification of specific imprinted chromosomal regions and genes is being used to unravel the molecular mechanism of imprinting and the developmental significance of the non-random expression of parental alleles. 相似文献
18.
19.
Solary E 《Comptes rendus des séances de la Société de biologie et de ses filiales》1998,192(6):1065-1076
Apoptosis is a genetically programmed cell death that is required for morphogenesis during embryogenic development and for tissue homeostasis in adult organisms. In most cases, apoptosis involves cytochrome c release from mitochondria. In the cytosol, cytochrome c combines with APAF-1 in the presence of ATP to activate caspase-9 that, in turn, activates effectors caspases such as caspase-3. Bcl-2 and related proteins control cytochrome c release from the mitochondria whereas IAP (for Inhibitor of APoptosis) molecules modulate the activity of caspases. Plasma membrane receptors such as Fas (CD95, APO-1), characterized by a so-called "death domain" in their cytoplasmic domain, can activate the caspase cascade through adaptator molecules such as FADD (Fas-Associated protein with a Death Domain). Dysregulation of the apoptotic machinery plays a role in the pathogenesis of various diseases and molecules involved in cell death pathways are potential therapeutic targets in immunologic, neurologic, cancer, infectious and inflammatory diseases. 相似文献
20.
M. V. Nemtsova 《Molecular Biology》2000,34(4):554-560
Modern data are reviewed that concern hereditary disorders caused by abnormal expression of imprinted genes rather than mutations and structural aberrations. As an example, the molecular organization of the critical chromosomal region 15(q11.2–q13) and the possible pathogenetic mechanisms are described in detail for Prader-Willi and Angelman syndromes. 相似文献