首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

2.
Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453 have been solved at 2.01 and 2.37A resolutions, respectively. The results revealed that the binding modes for this inhibitor to MMP-3 and -13 were quite similar. However, subtle comparative differences were observed at the bottom of S1' pockets, which were occupied with the guanidinomethyl moiety of the inhibitor. A remarkable feature of the inhibitor was the deep penetration of its long aliphatic chain into the S1' pocket and exposure of the guanidinomethyl moiety to the solvent.  相似文献   

3.
Bovine pulmonary artery smooth muscle tissue possesses the tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) as revealed by immunoblot studies of the cytosolic fraction with polyclonal TIMP-1 antibody. In this report, we described the purification and partial characterization of the inhibitor from the cytosolic fraction of the smooth muscle. This inhibitor was purified by a series of anion-exchange, gel filtration and affinity chromatographic procedure. The purified inhibitor showed an apparent molecular mass of 30 kDa in SDS-PAGE. Amino terminal sequence analysis for the first 22 amino acids of the purified inhibitor was also found to be identical to bovine TIMP-1. This glycosylated inhibitor was found to be active against matrix metallorpoteinase-9 (MMP-9, gelatinase B), the ambient matrix metalloproteinase in the pulmonary smooth muscle. The purified TIMP-1 was also found to be sensitive to pure rabbit and human fibroblast collagenase and type IV collagenase. In contrast, it had minimum inhibitory activity against bacterial collagenase. It was also found to be inactive against the serine proteases trypsin and plasmin. The inhibitor was heat and acid resistant and it had the sensitivity to trypsin degradation and reduction-alkylation.  相似文献   

4.
Time-resolved fluorescence decays from a series of methoxynaphthalene labelled peptides in ethyl acetate were monitored over the temperature range −40 to 60°C. The quenching effect of a piperidone acceptor group placed at various positions along the peptide chain relative to the fluorescent methoxynaphthalene donor was studied. In this moderately polar solvent the mechanism of quenching is most likely electron transfer, although a Dexter exchange mechanism cannot be ruled out. Both donor and acceptor moieties were covalently attached to the side-chains of glutamic acid residues. These were either placed adjacently, in the case of a dipeptide, or separated by three and six amino acids within a 12 and 15 amino-acid oligopeptide, respectively. The presence of the piperidone group resulted in a reduction in the fluorescence lifetime and a change from a simple monoexponential decay to more complex behaviour. This was found to vary reversibly with temperature and not to be caused by impurities. Modelling of the fluorescence decays was carried out using either the sum of two exponentials or a distribution of decays. For the dipeptide the best fit was a distribution while in the case of the 12-mer two clearly distinguishable populations could be observed. The results for the 15-mer were equivocal. Importantly, regardless of the fitting method used the quenching rate was found to be fastest for the 12-mer. The slower quenching rates observed for the dipeptide compared to the oligopeptides provide strong evidence that secondary structure promotes better electronic coupling between the donor and acceptor. The biexponential fluorescence behaviour for the 12 amino-acid oligopeptide is ascribed to two slowly (>10ns) interconverting conformational states. Comparison with circular dichroism and infrared obtained in acetonitrile indicates these two conformers are likely to be an -helix and a 3(10)-helix with electronic coupling strongest in the latter case.  相似文献   

5.
Polyclonal antibodies, raised against ((1→3), (1→4)-β-D-glucans from oat ( Avena sativa L.) caryopsis, were used to investigate the location and the metabolism of mixed-linked β-D-glucans. The binding of these antibodies to the cell walls of oat coleoptiles was shown by an indirect fluorescence method. Distinct fluorescent regions were observed along the inner layers of the walls of each cell. The preimmune serum or antibodies pretreated with oat caryopsis β-D-glucans did not react with the cell walls. Glucan antibodies were bound to the walls of other Poaceae coleoptiles as well as to those from oat mesocotyls and roots, whereas they were not bound to the walls of some dicotyledons tested. The relative glucan content of the cell walls of oat coleoptiles as determined by β-D-glucanase (EC 3.2.1.73) treatment was maximum between day 3 and 4 after soaking, but it declined during further elongation. A rapid decrease in glucan content was observed in excised coleoptiles when auxin or β-D-glucanase was present. There was a clear correlation between the glucan content expressed on a basis of cell wall polysaccharides and the amount of the antibodies bound to the cell walls. These results indicate that the antibodies are useful probes to detect and determine (1→3), (1→4)-β-D-glucans of cell walls.  相似文献   

6.
In silico interaction of curcumin with the enzyme MMP-3 (human stromelysin-1) was studied by molecular docking using AutoDock 4.2 as the docking software application. AutoDock 4.2 software serves as a valid and acceptable docking application to study the interactions of small compounds with proteins. Interactions of curcumin with MMP-3 were compared to those of two known inhibitors of the enzyme, PBSA and MPPT. The calculated free energy of binding (ΔG binding) shows that curcumin binds with affinity comparable to or better than the two known inhibitors. Binding interactions of curcumin with active site residues of the enzyme are also predicted. Curcumin appears to bind in an extendended conformation making extensive VDW contacts in the active site of the enzyme. Hydrogen bonding and pi-pi interactions with key active site residues is also observed. Thus, curcumin can be considered as a good lead compound in the development of new inhibitors of MMP-3 which is a potential target of anticancer drugs. The results of these studies can serve as a starting point for further computational and experimental studies.  相似文献   

7.
8.
The advent of Multi Drug Resistant (MDR) strain of Mycobacterium tuberculosis (TB) necessitated search for new drug targets for the bacterium. It is reported that 3.3% of all new tuberculosis cases had multidrug resistance (MDR-TB) in 2009 and each year, about 0.44 million MDR-TB cases are estimated to emerge and 0.15 million people with MDR-TB die. Keeping such an alarming situation under consideration we wanted to design suitable anti tubercular molecules for new target using computational tools. In the work Methionine aminopeptidase (MetAP) of Mycobacterium tuberculosis was considered as target and three non-toxic phenolic=ketonic compounds were considered as ligands. Docking was done with Flex X and AutoDock 4.2 separately. Ten proven inhibitors of MetAP were collected from literature with their IC50 and were correlated using EasyQSAR to generate QSAR model. Activity of ligands in question was predicted from QSAR. Pharmacophore for each docking was generated using Ligandscout 3.0. Toxicity of the ligands in question was predicted on Mobyle@rpbs portal and Actelion property explorer. Molecular docking with target showed that of all three ligands, 3-ammonio-3-(4-oxido-1H-imidazol-1-ium-5-yl) propane-1, 1-bis (olate) has highest affinity (- 37.5096) and lowest IC50 (4.46 µM). We therefore, propose that -3-ammonio-3-(4-oxido-1H-imidazol-1-ium-5-yl) propane-1,1- bis(olate) as a potent MetAP inhibitor may be a new anti-tubercular drug particularly in the context of Multi Drug Resistant Tuberculosis (MDR-TB).  相似文献   

9.
N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed.  相似文献   

10.
Charge microheterogeneity of myelin basic protein is known to affect its conformation and function. Here, the citrullinated myelin basic protein charge isomer, component-8, was shown to be more susceptible to stromelysin-1 cleavage than myelin basic protein component-1. Since levels of component-8 are increased in multiple sclerosis brain, the increased susceptibility of component-8 to proteolytic digestion may play a role in the pathogenesis of multiple sclerosis. Interestingly, component-1 isolated from multiple sclerosis patients was digested at a faster rate by stromelysin-1 than component-1 isolated from normal individuals. The reason for this difference is not clear, but likely reflects conformational differences between the two proteins as a result of post-translational modifications. Stromelysin-1 was able to cleave myelin basic protein in the presence of lipids and within the context of myelin and released several peptides including peptides containing the immunodominant epitope.  相似文献   

11.
The highly hydrophobic myelin Folch-Pi apoprotein can be solubilized in organic as well as in aqueous media. In order to understand the molecular organization changes consecutive to changes in the solvent medium, the environment of intrinsic probes and extrinsic labels has been studied by fluorescence and accessibility to some reagents. In acqueous solution, only two tryptophan residues per protein molecule of 23,500 molecular weight have been shown to fluoresce, and their fluorescence characterisitics indicate an hydrophobic and/or constrained environment. Two ANS binding sites have also been observed having a high quenching effect on the intrinsic chromophore fluorescence. A large accessibility has been evidenced for the protein sulfhydryl groups in chloroform-methanol 2:1 (v/v), both by kinetic study of the protein reaction with a specific reagent, N-(1-anilino-naphtyl-4) maleimide, and by the fluorescence characteristics of this probe once linked to the protein. The free sulfhydryl groups were still reactive in acqueous solution, but extrinsic fluorescence of the labelled apoprotein transferred from chloroform-methanol 2:1 (v/v) into water gave evidence of constraints on the probe or on its environment. Such constraints may contribute to the solubilization in acqueous solution of this highly hydrophobic protein.  相似文献   

12.
Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments.  相似文献   

13.
14.
Growth of the kidney is a complex process piloted by the collecting duct (CD) ampullae. The dichotomous arborisation and consecutive elongation of this tubular element determines the exact site and time for the induction of nephrons in the overlaying mesenchymal cap condensates. The mechanism by which the CD ampullae find the correct orientation is currently unknown. Recently, we have demonstrated micro-fibres that originate from the basal aspect of the CD ampullae and extend through the mesenchyme to the organ capsule. The micro-fibres are assumed to be involved in the growth and arborisation process of the CD ampulla. Therefore, we have investigated the specific distribution of the micro-fibres during branching morphogenesis. We have also analysed whether the micro-fibres co-localise with extracellular matrix (ECM)-modulating enzymes and whether the co-localisation pattern changes during CD ampulla arborisation. Micro-fibres were detected in all stages of CD ampulla arborisation. Tissue transglutaminase (Tgase2) co-localised with soybean agglutinin (SBA)-positive micro-fibres, whose presence depended upon the degree of CD branching. Matrix metalloproteinase-9 (MMP-9) also co-localised with micro-fibres, but its expression pattern was different from that for Tgase2. Western blotting experiments demonstrated that Tgase2 and MMP-9 co-migrated with SBA-labelled proteins. Thus, the micro-fibres are developmentally modulated by enzymes of the ECM in embryonic kidney cortex. These findings illustrate the importance of micro-fibres in directing CD ampulla growth.  相似文献   

15.
16.
d ‐penicillamine‐capped cadmium telluride quantum dots (DPA‐capped CdTe QDs) were synthesized as the new fluorescent semiconductor nanocrystal in aqueous solution. Fourier transmission infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet‐visible and photoluminescence spectroscopy were used for characterization of the QDs. Based on the quenching effect of Cu2+ ions on the fluorescence intensity of DPA‐capped CdTe QDs, a new fluorometric sensor for copper(II) detection was developed that showed good linearity over the concentration range 5 × 10–9–3 × 10–6 m with the detection limit 0.4 × 10–9 m . Owing to the strong affinity of the DPA to copper(II), the sensor showed appropriate selectivity for copper(II) compared with conventional QDs. The DPA‐capped CdTe QDs was successfully applied for determination of Cu2+ concentration in river, well and tap waters with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Transient receptor potential melastatin-1 channel (TRPM1) is an important mediator of calcium influx into the cell that is expressed in melanoma and ON-bipolar cells. Similar to other members of the TRP channel family, the intracellular N- and C- terminal domains of TRPM1 are expected to play important roles in the modulation of TRPM1 receptor function. Among the most commonly occurring modulators of TRP channels are the cytoplasmically expressed calcium binding proteins calmodulin and S100 calcium-binding protein A1 (S100A1), but the interaction of TRPM1 with S100A1 has not been described yet. Here, using a combination of biophysical and bioinformatics methods, we have determined that the N-terminal L242-E344 region of TRPM1 is a S100A1 binding domain. We show that formation of the TRPM1/S100A1 complex is calcium-dependent. Moreover, our structural model of the complex explained data obtained from fluorescence spectroscopy measurements revealing that the complex formation is facilitated through interactions of clusters positively charged (K271A, R273A, R274A) and hydrophobic (L263A, V270A, L276A) residues at the N-terminus of TRPM1. Taken together, our data suggest a molecular mechanism for the potential regulation of TRPM1 by S100A1.  相似文献   

18.
We elucidated the metabolism of methylglyoxal (MG) in chloroplasts of higher plants. Spinach chloroplasts showed MG-dependent NADPH oxidation because of aldo-keto reductase (AKR) activity. K(m) for MG and V(max) of AKR activity were 6.5 mm and 3.3 μmol NADPH (mg Chl)(-1) h(-1) , respectively. Addition of MG to illuminated chloroplasts induced photochemical quenching (Qp) of Chl fluorescence, indicating that MG stimulated photosynthetic electron transport (PET). Furthermore, MG enhanced the light-dependent uptake of O(2) into chloroplasts. After illumination of chloroplasts, accumulation of H(2) O(2) was observed. K(m) for MG and V(max) of O(2) uptake were about 100 μm and 200 μmol O(2) (mg Chl)(-1) h(-1) , respectively. MG-dependent O(2) uptake was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Under anaerobic conditions, the Qp of Chl fluorescence was suppressed. These results indicate that MG was reduced as a Hill oxidant by the photosystem I (PSI), and that O(2) was reduced to O(2) (-) by the reduced MG. In other words, MG produced in chloroplasts is preferentially reduced by PSI rather than through AKR. This triggers a type of oxidative stress that may be referred to as 'plant diabetes', because it ultimately originates from a common metabolite of the primary pathways of sugar anabolism and catabolism.  相似文献   

19.
Lu Y  Liu S  Zhang S  Cai G  Jiang H  Su H  Li X  Hong Q  Zhang X  Chen X 《Molecules and cells》2011,31(3):225-230
Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays various roles in cell growth in different cell types. However, few studies have focused on TIMP-1’s effect on fibroblast cells. In this study, we investigated the effects of TIMP-1 overexpression on NIH3T3 fibroblast proliferation and potential transduction signaling pathways involved. Overexpression of TIMP-1, by transfection of the pLenti6/V5-DESTTIMP-1 plasmid, significantly promoted NIH3T3 proliferation as determined by the BrdU array. Neither 5 nor 15 nM GM6001 (matrix metalloproteinase system inhibitor) affected NIH3T3 proliferation, but 45 nM GM6001 inhibited proliferation. TIMP-1 overexpression activated the p-Akt pathway, but not the p-ERK or p-p38 pathway. In TIMP-1-transfected cells, cyclinD1 was upregulated and p21CIP1 and p27KIP1 were downregulated, which promoted cell entry into the S and G2/M phases. The PI3-K inhibitor LY294002 abolished the TIMP-1-induced effects. Overexpression of intracellular TIMP-1 stimulated NIH3T3 fibroblast proliferation in a matrix metalloproteinase (MMP)-independent manner by activating the p-Akt pathway and related cell cycle progression.  相似文献   

20.
The full three-dimensional structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent, sulfonamide hydroxamic acid inhibitor (CGS 27023) has been determined by NMR spectroscopy. The results reveal a core domain for the protein consisting of three alpha-helices and five beta-sheet strands with an overall tertiary fold similar to the catalytic domains of other matrix metalloproteinase family members. The S1' pocket, which is the major site of hydrophobic binding interaction, was found to be a wide cleft spanning the length of the protein and presenting facile opportunity for inhibitor extension deep into the pocket. Comparison with the reported X-ray structure of collagenase-3 showed evidence of flexibility for the loop region flanking the S1' pocket in both NMR and X-ray data. This flexibility was corroborated by NMR dynamics studies. Inhibitor binding placed the methoxy phenyl ring in the S1' pocket with the remainder of the molecule primarily solvent-exposed. The binding mode for this inhibitor was found to be similar with respect to stromelysin-1 and collagenase-1; however, subtle comparative differences in the interactions between inhibitor and enzyme were observed for the three MMPs that were consistent with their respective binding potencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号