首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

2.
Biotin binding reduces the tryptophan fluorescence emissions of streptavidin by 39%, blue shifts the emission peak from 333 to 329 nm, and reduces the bandwidth at half height from 53 to 46 nm. The biotin-induced emission difference spectrum resembles that of a moderately polar tryptophan. Streptavidin fluorescence can be described by two lifetime classes: 2.6 nsec (34%) and 1.3 nsec (66%). With biotin bound, lifetimes are 1.3 nsec (26%) and 0.8 nsec (74%). Biotin binding reduces the average fluorescence lifetime from 1.54 to 0.88 nsec. Biotin does not quench the fluorescence of indoles. The fluorescence changes are consistent with biotin binding causing a conformational change which moves tryptophans into proximity to portions of streptavidin which reduce the quantum yield and lifetimes. Fluorescence quenching by acrylamide revealed two classes of fluorophores. Analysis indicated a shielded component comprising 20–28% of the initial fluorescence with (KSV+V)0.55 M–1. The more accessible component has a predominance of static quenching. Measurements of fluorescence lifetimes at different acrylamide concentrations confirmed the strong static quenching. Since static quenching could be due to acrylamide binding to streptavidin, a dye displacement assay for acrylamide binding was constructed. Acrylamide does bind to streptavidin (Ka=5 M–1), and probably binds within the biotin-binding site. In the absence of biotin, none of streptavidin's fluorescence is particularly accessible to iodide. In the presence of biotin, iodide neither quenches fluorescence nor alters emission spectra, and acrylamide access is dramatically reduced. We propose that the three tryptophans which always line the biotin site are sufficiently close to the surface of the binding site to be quenched by bound acrylamide. These tryptophans are shielded from iodide, most probably due to steric or ionic hindrances against diffusion into the binding site. Most of the shielding conferred by biotin binding can be attributed to the direct shielding of these residues and of a fourth tryptophan which moves into the binding site when biotin binds, as shown by X-ray studies (Weberet al., 1989).  相似文献   

3.
Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.  相似文献   

4.
Chemical modification of potato apyrase suggests that tryptophan residues are close to the nucleotide binding site. Kd values (+/- Ca2+) for the complexes of apyrase with the non-hydrolysable phosphonate adenine nucleotide analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(alpha,beta-methylene) diphosphate, were obtained from quenching of the intrinsic enzyme fluorescence. Other fluorescent nucleotide analogues (2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, 2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-diphosphate. 1,N6-ethenoadenosine triphosphate and 1,N6-ethenoadenosine diphosphate) were hydrolysed by apyrase in the presence of Ca2+, indicating binding to the active site. The dissociation constants for the binding of these analogues were calculated from both the decrease of the protein (tryptophan) fluorescence and enhancement of the nucleotide fluorescence. Using the sensitised acceptor (nucleotide analogue) fluorescence method, energy transfer was observed between enzyme tryptophans and ethene-derivatives. These results support the view that tryptophan residues are present in the nucleotide-binding region of the protein, appropriately oriented to allow the energy transfer process to occur.  相似文献   

5.
We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin. The interfacially localized tryptophans in the channel conformation display REES of 7 nm whereas the tryptophans in the nonchannel conformation exhibit REES of 2 nm which highlights the difference in their average environments in terms of localization in the membrane. This is supported by tryptophan penetration depth measurements using the parallax method and fluorescence lifetime and polarization measurements. Further differences in the average tryptophan microenvironments in the two conformations are brought out by fluorescence quenching experiments using acrylamide and chemical modification of the tryptophans by N-bromosuccinimide. In summary, we report novel fluorescence-based approaches to monitor conformations of this important ion channel peptide. Our results offer vital information on the organization and dynamics of the functionally important tryptophan residues in gramicidin.  相似文献   

6.
Comparative studies of intrinsic and extrinsic fluorescence of apyrases purified from two potato tuber varieties (Pimpernel and Desirée) were performed to determine differences in the microenvironment of the nucleotide binding site. The dissociation constants (K(d)) of Pimpernel apyrase for the binding of different fluorescent substrate analogs: methylanthranoyl (MANT-), trinitrophenyl (TNP-), and epsilon -derivatives of ATP and ADP were determined from the quenching of Trp fluorescence, and compared with K(d) values previously reported for Desirée enzyme. Binding of non-fluorescent substrate analogues decreased the Trp emission of both isoapyrases, indicating conformational changes in the vicinity of these residues. Similar effect was observed with fluorescent derivatives where, in the quenching effect, the transfer of energy from tryptophan residues to the fluorophore moiety could be additionally involved. The existence of energy transfer between Trp residues in the Pimpernel enzyme was demonstrated with epsilon -analogues, similar to our previous observations with the Desirée. From these results we deduced that tryptophan residues are close to or in the nucleotide binding site in both enzymes. Experiments with quenchers like acrylamide, Cs(+) and I(-), both in the presence and absence of nucleotide analogues, suggest the existence of differences in the nucleotide binding site of the two enzymes. From the results obtained in this work, we can conclude that the differences found in the microenvironment of the nucleotide binding site can explain, at least in part, the kinetic behaviour of both isoenzymes.  相似文献   

7.
Spectroscopic examination of the active site of bovine ferrochelatase   总被引:2,自引:0,他引:2  
H A Dailey 《Biochemistry》1985,24(6):1287-1291
Spectrofluorometric techniques have been employed to examine the active site of the terminal enzyme of the heme biosynthetic pathway, ferrochelatase (protoheme ferrolyase, EC 4.99.1.1). The fluorescence of both endogenous tryptophan and exogenous 2-(4-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) has been examined. The fluorescence emission of the enzyme's active site bound MIANS is at 428 nm while the enzyme tryptophan(s) yielded a single fluorescence emission maximum at 347 nm. These values are characteristic of a polar environment for tryptophan and a relatively nonpolar environment for the MIANS. The dynamic fluorescence quenching constants for acrylamide of MIANS and tryptophan are 3.00 M-1 and 1.85 M-1, respectively. Quenching constants for KI of both fluorescent centers were approximately 1 M-1. These data suggest that both fluorophores are poorly accessible to the external anionic contact quencher but that an unchanged quencher, while larger, is still better able to penetrate the enzyme's active site. The extrapolated anisotropies (r0) for ferrochelatase-bound MIANS and tryptophan are 0.198 and 0.307. The dissociation constant (KD) determined by fluorescence anisotropy of protoporphyrin was 1.5 microM with the calculated number of porphyrin binding sites as 1.0 per 40000 daltons. A model is presented for the active site of ferrochelatase based upon the data presented here and previously. This model proposes that the active site is a hydrophobic pocket similar in nature to the heme binding crevices found in many hemoproteins.  相似文献   

8.
The environment of tryptophan in castor bean hemagglutinin (CBH) was analyzed by fluorescence spectroscopy with regard to saccharide binding. Upon binding of specific saccharides, the fluorescence maximum of 333 nm of CBH shifted to a wavelength 2 nm shorter, owing to the change in the environment of tryptophan at the saccharide-binding site. By analyzing the change in the fluorescence intensity at 320 nm as a function of concentration of saccharides, the association constants for binding of saccharides to CBH were determined. The results suggest that the saccharide-binding site on each B-chain is actually composed of a subsite with which the saccharide residue linked to galactopyranoside at the non-reducing end can interact, and another site which recognizes the galactopyranoside moiety. Quenching data indicated that five out of 22 tryptophans in CBH are surface-localized and are available for quenching with both KI and acrylamide, and three other tryptophans are buried and are available only to acrylamide. Binding of raffinose to CBH decreased by 2 the number of tryptophan residues accessible to quenchers in the CBH molecule. We speculate that raffinose binds to CBH in such a manner as to shield the tryptophan located at the subsite from quenching by KI and acrylamide. The results also suggest that the tryptophan residue at the saccharide-binding site on each B-chain is localized near the surface, and present in the positively charged environment.  相似文献   

9.
The location and environment of tryptophans in the soluble and membrane-bound forms of Staphylococcus aureus alpha-toxin were monitored using intrinsic tryptophan fluorescence. Fluorescence quenching of the toxin monomer in solution indicated varying degrees of tryptophan burial within the protein interior. N-Bromosuccinimide readily abolished 80% of the fluorescence in solution. The residual fluorescence of the modified toxin showed a blue-shifted emission maximum, a longer fluorescence lifetime as compared to the unmodified and membrane-bound alpha-toxin, and a 5- to 6-nm red edge excitation shift, all indicating a restricted tryptophan environment and deeply buried tryptophans. In the membrane-bound form, the fluorescence of alpha-toxin was quenched by iodide, indicating a conformational change leading to exposure of some tryptophans. A shorter average lifetime of tryptophans in the membrane-bound alpha-toxin as compared to the native toxin supported the conclusions based on iodide quenching of the membrane-bound toxin. Fluorescence quenching of membrane-bound alpha-toxin using brominated and spin-labeled fatty acids showed no quenching of fluorescence using brominated lipids. However, significant quenching was observed using 5- and 12-doxyl stearic acids. An average depth calculation using the parallax method indicated that the doxyl-quenchable tryptophans are located at an average depth of 10 A from the center of the bilayer close to the membrane interface. This was found to be in striking agreement with the recently described structure of the membrane-bound form of alpha-toxin.  相似文献   

10.
We report tryptophan fluorescence measurements of emission intensity, iodide quenching, and anisotropy that describe the environment and dynamics at X and Y sites in stable collagen-like peptides of sequence (Gly-X-Y)(n). About 90% of tryptophans at both sites have similar solvent exposed fluorescence properties and a lifetime of 8.5-9 ns. Analysis of anisotropy decays using an associative model indicates that these long lifetime populations undergo rapid depolarizing motion with a 0.5 ns correlation time; however, the extent of fast motion at the Y site is considerably less than the essentially unrestricted motion at the X site. About 10% of tryptophans at both sites have a shorter ( approximately 3 ns) lifetime indicating proximity to a protein quenching group; these minor populations are immobile on the peptide surface, depolarizing only by overall trimer rotation. Iodide quenching indicates that tryptophans at the X site are more accessible to solvent. Side chains at X sites are more solvent accessible and considerably more mobile than residues at Y sites and can more readily fluctuate among alternate intermolecular interactions in collagen fibrils. This fluorescence analysis of collagen-like peptides lays a foundation for studies on the structure, dynamics, and function of collagen and of triple-helical junctions in gelatin gels.  相似文献   

11.
The physiological effects of anesthetics have been ascribed to their interaction with hydrophobic sites within functionally relevant CNS proteins. Studies have shown that volatile anesthetics compete for luciferin binding to the hydrophobic substrate binding site within firefly luciferase and inhibit its activity (Franks, N. P., and Lieb, W. R. (1984) Nature 310, 599-601). To assess whether anesthetics also compete for ligand binding to a mammalian signal transduction protein, we investigated the interaction of the volatile anesthetic, halothane, with the Rho GDP dissociation inhibitor (RhoGDIalpha), which binds the geranylgeranyl moiety of GDP-bound Rho GTPases. Consistent with the existence of a discrete halothane binding site, the intrinsic tryptophan fluorescence of RhoGDIalpha was quenched by halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in a saturable, concentration-dependent manner. Bromine quenching of tryptophan fluorescence is short-range and W192 and W194 of the RhoGDIalpha are located within the geranylgeranyl binding pocket, suggesting that halothane binds within this region. Supporting this, N-acetyl-geranylgeranyl cysteine reversed tryptophan quenching by halothane. Short chain n-alcohols ( n < 6) also reversed tryptophan quenching, suggesting that RhoGDIalpha may also bind n-alkanols. Consistent with this, E193 was photolabeled by 3-azibutanol. This residue is located in the vicinity of, but outside, the geranylgeranyl chain binding pocket, suggesting that the alcohol binding site is distinct from that occupied by halothane. Supporting this, N-acetyl-geranylgeranyl cysteine enhanced E193 photolabeling by 3-azibutanol. Overall, the results suggest that halothane binds to a site within the geranylgeranyl chain binding pocket of RhoGDIalpha, whereas alcohols bind to a distal site that interacts allosterically with this pocket.  相似文献   

12.
The consequences of active site mutations of the Escherichia coli D-xylose isomerase (E.C. 5.3.1.5) on substrate binding were examined by fluorescence spectroscopy. Site-directed mutagenesis of conserved tryptophan residues in the E. coli enzyme (Trp49 and Trp188) reveals that fluorescence quenching of these residues occurs during the binding of xylose by the wild-type enzyme. The fluorescent properties of additional active site substitutions at His101 were also examined. Substitutions of His101 which inactivate the enzyme were shown to have altered spectral characteristics, which preclude detection of substrate binding. In the case of H101S, a mutant protein with measurable isomerizing activity, substrate binding with novel fluorescent properties was observed, possibly the bound pyranose form of xylose under steady-state conditions.  相似文献   

13.
Bovine carbonic anhydrase shows an intrinsic fluorescence which results from tryptophans located in different microenvironments. It is possible to attribute the whole fluorescence to at least two types of tryptophan.This fluorescence is differently affected by the binding of different metals. In fact while Zn2+ causes an increase of the fluorescence yield, the binding of Co2+, Cu2+ and Hg2+ is followed by a quenching of the fluorescence. The quenching is about 40% for the cobalt, 80% for the copper and 60% for the mercury derivative. The binding of Cu2+ and Hg2+ induces also a change in the shape of the fluorescence emission spectrum. This fact suggests a different influence of the metals on the various types of tryptophan.The fluorescence quenching induced by iodide which can bind to the metal and act as a fluorescence perturbing agent is also indicative of the presence of different tryptophans.  相似文献   

14.
C A Royer  P Tauc  G Hervé  J C Brochon 《Biochemistry》1987,26(20):6472-6478
The polarization of the fluorescence and the real-time fluorescence intensity decay of the two tryptophan residues of aspartate transcarbamylase from Escherichia coli were studied as a function of temperature. The protein was dissolved in an 80% glycerol/buffer mixture, and temperatures were varied between -40 and 20 degrees C in order to limit the depolarization to local rotations of the tryptophans. Two fluorescent species contribute to over 95% of the emission. They differ in their fluorescence lifetimes by approximately 4 ns depending upon the temperature observed and their fractional contributions to the total intensity. The Y-plot analysis of the polarization and lifetime data allows for the distinction of two rotational species by their critical amplitude of rotation, the first being component 1 and the second being component 2. We suggest that these two species correspond to the two tryptophan residues of the protein. The polarization and lifetime experiments were carried out for ATCase in presence of the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate (PALA) and in presence of the nucleotide effector molecules ATP and CTP. The binding of PALA results in an increase in the thermal coefficient of frictional resistance to rotation of tryptophan 1 and a decrease in that of tryptophan 2. ATP binding does not affect the degree to which the protein hinders tryptophan rotation but does result in a change in the critical amplitude of rotation of tryptophan 2. The results obtained in the presence of CTP are similar to those obtained with PALA.  相似文献   

15.
The active site of an apoptotic enzyme caspase-3 was characterized by measuring the intrinsic fluorescence of two tryptophan residues. Temperature dependence of the intrinsic fluorescence, the energy homotransfer between the tryptophan residues, and the fluorescence quenching by tetrapeptide inhibitors were investigated by the fluorescence lifetime measurements. It has been observed that the fluorescence lifetimes of caspase-3 in complex with inhibitors were significantly shortened by the electron transfer process.  相似文献   

16.
The binding of saccharides to Abrus precatorius agglutinin (APA) was analyzed by fluorescence spectroscopy. Upon binding of specific saccharides, the fluorescence emission maximum of APA (338 nm) shifted to shorter wavelength by 5 nm, owing to the change in the environment of tryptophan. By analyzing the change in the fluorescence intensity at 338 nm as a function of concentration of saccharides, the association constants for binding of saccharides to APA were determined. The results suggest that in the saccharide binding site on each B-chain of APA, there may be a site which interacts with the saccharide residue linked to galactopyranoside at the non-reducing end, in addition to the site which recognizes the galactopyranosyl residue. Fluorescence quenching data indicate that 8 out of 24 tryptophans in APA are located at or near the surface of the protein molecule and are available for quenching with both KI and acrylamide, and 10 tryptophans are involved in the environment to which acrylamide has access but KI does not. Binding of lactose to APA reduced by 4 the number of tryptophan residues accessible to quenchers. Based on the results, it is suggested that the tryptophan residues at the saccharide binding site on each B-chain of APA are present on the surface of the APA molecule, and they are shielded from quenching by KI and acrylamide upon binding with specific saccharides.  相似文献   

17.
The steady-state and time-resolved fluorescence properties of the multitryptophan minimal subunit CaeSS2 from Carcinus aestuarii hemocyanin have been studied with the aim of probing the environment of the fluorophores within the protein matrix. Subunit a of Panulirus interruptus hemocyanin, whose X-ray structure is known, has been also studied. The results are compared with those collected with other two monomeric fractions (CaeSS1, CaeSS3) produced by dissociation of the native, oligomeric protein as well as with those of the hexameric aggregate. Three classes of tryptophan residues can be singled out by a combination of fluorescence quenching and lifetime measurements on the holo-Hc (the copper containing, oxygen binding form) and the apo-Hc (the copper-free derivative). One class of tryptophans is exposed to the protein surface. Some of these residues are proposed to be involved in the intersubunit interactions in CaeSS1 and CaeSS3 fractions whereas in CaeSS2 the protein matrix masks them. This suggests the occurrence of conformational rearrangements after detachment of the subunit from the native aggregate, which could explain the inability of CaeSS2 to reassociate. A second class of tryptophan has been correlatively assigned, by comparison with the results obtained with Panulirus interruptus hemocyanin, to residues in close proximity to the active site. The third class includes buried, active site-distant, residues.  相似文献   

18.
The biophysical properties of a tryptophan-shifted mutant of phosphofructokinase from Bacillus stearothermophilus (BsPFK) have been examined. The mutant, designated W179Y/Y164W, has kinetic and thermodynamic properties similar to the wild-type enzyme. A 2-fold decrease in kcat is observed, and the mutant displays a 3-fold smaller K(0.5) for the substrate, fructose-6-phosphate (Fru-6-P), as compared to the wild-type enzyme. The dissociation constant for the inhibitor, phospho(enol)pyruvate (PEP), increases 2-fold, and the coupling parameter, Q(ay), decreases 2-fold. This suggests that while the mutant displays a slightly decreased affinity for PEP, PEP is still an effective inhibitor once bound. The new position of the tryptophan in W179Y/Y164W is approximately 6 A from the Fru-6-P portion of the active site. A 25% decrease in fluorescence intensity is observed upon Fru-6-P binding, and an 80% decrease in fluorescence intensity is observed with PEP binding. In addition, the intrinsic fluorescence polarization increases from 0.327 +/- 0.001 to 0.353 +/- 0.001 upon Fru-6-P binding, but decreases to 0.290 +/- 0.001 when PEP binds. Most notably, the presence of PEP induces dissociation of the tetramer. Dissociation of the tetramer into dimers occurs along the active site interface and can be monitored by the loss in activity or the loss in tryptophan fluorescence that is observed when the enzyme is titrated with PEP. Activity can be protected or recovered by incubating the enzyme with Fru-6-P. Recovery of activity is enzyme concentration dependent, and the rate constant for association is 6.2 +/- 0.3 M(-1) x s(-1). Ultracentrifugation experiments revealed that in the absence of PEP the mutant enzyme exists in an equilibrium between the dimer and tetramer forms with a dissociation constant of 11.8 +/- 0.5 microM, while in the presence of PEP the enzyme exists in equilibrium between the dimer and monomer forms with a dissociation constant of 7.5 +/- 0.02 microM. A 3.1 A crystal structure of the mutant enzyme suggests that the amino acid substitutions have not dramatically altered the tertiary structure of the enzyme. While it is clear that wild-type BsPFK exists as a tetramer under these same conditions, these results suggest that quaternary structural changes probably play an important role in allosteric communication.  相似文献   

19.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

20.
Human thymus adenosine deaminase was isolated by using a monoclonal antibody affinity column. The highly purified enzyme produced by this rapid, efficient procedure had a molecular weight of 44,000. Quenching of the intrinsic protein fluorescence by small molecules was used to probe the accessibility of tryptophan residues in the enzyme and enzyme-inhibitor complexes. The fluorescence emission spectrum of human adenosine deaminase at 295-nm excitation had a maximum at about 335 nm and a quantum yield of 0.03. Addition of polar fluorescence quenchers, iodide and acrylamide, shifted the peak to the blue, and the hydrophobic quencher trichloroethanol shifted the peak to the red, indicating that the emission spectrum is heterogeneous. The fluorescence quenching parameters obtained for these quenchers reveal that the tryptophan environments in the protein are relatively hydrophobic. Binding of both ground-state and transition-state analogue inhibitors caused decreases in the fluorescence intensity of the enzyme, suggesting that one or more tryptophans may be near the active site. The kinetics of the fluorescence decrease were consistent with a slow conformational alteration in the transition-state inhibitor complexes. Fluorescence quenching experiments using polar and nonpolar quenchers were also carried out for the enzyme-inhibitor complexes. The quenching parameters for all enzyme-inhibitor complexes differed from those for the uncomplexed enzyme, suggesting that inhibitor binding causes changes in the conformation of adenosine deaminase. For comparison, parallel quenching studies were performed for calf adenosine deaminase in the absence and presence of inhibitors. While significant structural differences between adenosine deaminase from the two sources were evident, our data indicate that both enzymes undergo conformational changes on binding ground-state and transition-state inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号