首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Enterocytes exist in close association with tissue macrophages, whose activation during inflammatory processes leads to the release of nitric oxide (NO). Repair from mucosal injury requires the migration of enterocytes into the mucosal defect, a process that requires connexin43 (Cx43)-mediated gap junction communication between adjacent enterocytes. Enterocyte migration is inhibited during inflammatory conditions including necrotizing enterocolitis, in part, through impaired gap junction communication. We now hypothesize that activated macrophages inhibit gap junctions of adjacent enterocytes and seek to determine whether NO release from macrophages was involved. Using a coculture system of enterocytes and macrophages, we now demonstrate that "activation" of macrophages with lipopolysaccharide and interferon reduces the phosphorylation of Cx43 in adjacent enterocytes, an event known to inhibit gap junction communication. The effects of macrophages on enterocyte gap junctions could be reversed by treatment of macrophages with the inducible nitric oxide synthase (iNOS) inhibitor l-Lysine omega-acetamidine hydrochloride (l-NIL) and by incubation with macrophages from iNOS(-/-) mice, implicating NO in the process. Activated macrophages also caused a NO-dependent redistribution of connexin43 in adjacent enterocytes from the cell surface to an intracellular location, further suggesting NO release may inhibit gap junction function. Treatment of enterocytes with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) markedly inhibited gap junction communication as determined using single cell microinjection of the gap junction tracer Lucifer yellow. Strikingly, activated macrophages inhibited enterocyte migration into a scraped wound, which was reversed by l-NIL pretreatment. These results implicate enterocyte gap junctions as a target of the NO-mediated effects of macrophages during intestinal inflammation, particularly where enterocyte migration is impaired.  相似文献   

3.
To understand the role of nitric oxide (NO) in the regulation of cellular metabolism in peritoneal macrophages under physiological low oxygen tension, its effect on the respiration and energy metabolism was examined with casein-induced peritoneal macrophages from the rat. Intraperitoneal injection of casein transiently induced peritoneal infiltration of neutrophils (peaked on day 1) followed by the migration of macrophages that peaked on day 2. Western blotting analysis using antibodies against inducible type of NO synthase (iNOS) revealed that macrophages appeared in the peritoneal cavity during an early stage (approximately day 2) but not during the late stage (day 3 approximately) of inflammation expressed iNOS and generated substantial amounts of NO by a mechanism that was inhibited by N-iminoethyl-L-ornithine (NIO), a specific inhibitor of iNOS. Although NO reversibly but strongly inhibited the respiration of macrophages from both stages particularly under physiologically low oxygen tension, NIO markedly enhanced the respiration of macrophages obtained from the early period but not from the late period of inflammation. The ATP level in the macrophages from the late period but not from the early period was markedly decreased by NO. Biochemical analysis revealed that the glycolytic activity in the macrophages obtained from the early period was significantly higher than that from the late period of inflammation. These results indicate that significant fractions of cellular ATP in iNOS-positive peritoneal macrophages are synthesized by the increased activity of glycolysis particularly under physiological low oxygen tensions where the mitochondrial respiration is strongly inhibited by endogenously generated NO by macrophages and neutrophils.  相似文献   

4.
5.
Toxic properties of NO in organism are realized under its hyperproduction and inhibition of the system of anti-oxidant protection as a result of complex chemical transformations, the transient metals, oxygen, superoxide and other radicals being their main participant. Here direct paths (through formation of nitrosil complexes with the gem and nongem iron) of the toxic action of NO and the path mediated by active forms of nitrogen are found, which disturb various biomolecules and subcellular component through the reactions of S- and N-nitrozation, nitration, oxidation, desamination and other reaction, cause metabolic disbalance and death of cells by the type of apoptosis or necrosis. A possible mechanism of the death of cells caused by NO was considered on the example of thymocytes. According to this mechanism one of early stages of this death is a decrease of the cell fund of AP, intensification of catabolism of adenine nucleotides and transformation of xanthine oxidoreductase from D-form (xanthine dehydrogenase) of O-forms (xantine oxidase) which catalizes formation of cytotoxic molecules of superoxide and hydroperoxide. This cytotoxic mechanism which includes transformation of xanthine oxidase system, is probably, universal and does not depend essentially on the starting factor.  相似文献   

6.
IL-1 and TNF alpha are assumed to be major mediators of islet cell destruction during the pathogenesis of type 1 diabetes. Here we show by neutralization of the two cytokines with excess antibody that IL-1 and TNF alpha do not contribute to the cytotoxic activity of activated macrophages towards isolated islet cells. However, islet cells can be protected from lysis by depleting the culture medium of L-arginine or by adding the antagonist NG-monomethyl-L-arginine, both of which inhibit the generation of nitric oxide by activated macrophages. These results indicate a role of nitric oxide or its equivalent, the endothelium-derived relaxing factor in the development of type 1 diabetes. This is the first report showing that nitric oxide may damage normal cells and thus may be a hitherto unrecognized pathogenetic factor in tissue inflammation and autoimmune disence.  相似文献   

7.
Cystatins are natural tight-binding, reversible inhibitors of cysteine proteases. We have shown that cystatins also stimulate nitric oxide (NO) production by interferon-gamma-activated mouse peritoneal macrophages [Verdot, L., Lalmanach, G., Vercruysse, V., Hartman, S., Lucius, R., Hoebeke, J., Gauthier F. & Vray, B. (1996) J. Biol. Chem. 271, 28077-28081]. The present study was undertaken to further document this new function. Macrophages activated with interferon-gamma and then stimulated with interferon-gamma plus chicken cystatin generated increased amounts of NO in comparison with macrophages only activated with interferon-gamma. Interferon-gamma-activated macrophages must be incubated with chicken cystatin for at least 8 h to upregulate NO production. NO induction was due to increased inducible nitric oxide synthase protein synthesis. Macrophages incubated with chicken cystatin alone or with interferon-gamma plus chicken cystatin produced increased amounts of both tumor necrosis factor alpha and interleukin 10. The addition of recombinant murine tumor necrosis factor alpha alone or in combination with recombinant murine interleukin-10 mimicked the effect of chicken cystatin. The addition of neutralizing anti-(tumor necrosis factor alpha) antibodies reduced sharply NO production by chicken cystatin/interferon-gamma-activated mouse peritoneal macrophages. Taken together, these data suggest that chicken cystatin induces the synthesis of tumor necrosis factor alpha and interleukin 10. In turn, these two cytokines stimulate the production of NO by interferon-gamma-activated macrophages. The findings point to a new relationship between cystatins, cytokines, inflammation and the immune response.  相似文献   

8.
Nitric oxide (NO) synthase (EC 1.14.23) has been purified to apparent homogeneity from rat macrophages. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and gel filtration chromatography on a Superose 12 HR 10/30 column. The apparent molecular weight is 300,000 by gel filtration. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrates as a single protein band with Mr = 150,000. The purified enzyme is colorless, and an absorption maximum is observed at 280 nm. The half-life of the enzyme activity is 6 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of NADPH, (6R)-5,6,7,8-tetrahydro-L-biopterin, and dithiothreitol. Although the cerebellar and endothelial enzyme require Ca2+ and calmodulin, these are not required by the macrophage enzyme. The macrophage nitric oxide synthase (an inducible enzyme) seems to be different from the cerebellar and endothelial enzyme (a constitutive enzyme).  相似文献   

9.
Proliferation of neural precursors in the optic lobe of Manduca sexta is controlled by circulating steroids and by local production of nitric oxide (NO). Diaphorase staining, anti-NO synthase (NOS) immunocytochemistry and the NO-indicator, DAF-2, show that cells throughout the optic anlage contain NOS and produce NO. Signaling via NO inhibits proliferation in the anlage. When exposed to low levels of ecdysteroid, NO production is stimulated and proliferation ceases. When steroid levels are increased, NO production begins to decrease within 15 minutes independent of RNA or protein synthesis and cells rapidly resume proliferation. Resumption of proliferation is not due simply to the removal of NO repression though, but also requires an ecdysteroid stimulatory pathway. The consequence of these opposing pathways is a sharpening of the responsiveness to the steroid, thereby facilitating a tight coordination between development of the different elements of the adult visual system.  相似文献   

10.
Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages.   总被引:36,自引:0,他引:36  
The effect of glucocorticoids on the production of NO2- and NO by the macrophage cell line J774 was investigated. Stimulation of the cells with lipopolysaccharide (LPS) resulted in a time-dependent accumulation of NO2- in the medium, reaching a plateau after 48h. Concomitant incubation of the cells for 24h with dexamethasone (0.001-1.0 microM) or hydrocortisone (0.01-10.0 microM) caused a concentration-dependent inhibition of NO2- formation. The cytosol of J774 cells stimulated with LPS and IFN-gamma produced a time-dependent increase in the release of NO. This was blocked in a concentration-dependent manner by dexamethasone and hydrocortisone, but not progesterone, administered concomitantly with the immunological stimulus. None of these compounds had any effect on the release of NO once the enzyme had been induced. The inhibitory effect of hydrocortisone on NO formation was blocked by cortexolone. These data suggest that part of the anti-inflammatory and immunosuppressive actions of glucocorticoids is due to their inhibition of the induction of the NO synthase.  相似文献   

11.
12.
The interactions between NO and O(2) in activated macrophages were analysed by incorporating previous cell culture and enzyme kinetic results into a novel reaction-diffusion model for plate cultures. The kinetic factors considered were: (i) the effect of O(2) on NO production by inducible NO synthase (iNOS); (ii) the effect of NO on NO synthesis by iNOS; (iii) the effect of NO on respiratory and other O(2) consumption; and (iv) the effects of NO and O(2) on NO consumption by a possible NO dioxygenase (NOD). Published data obtained by varying the liquid depth in macrophage cultures provided a revealing test of the model, because varying the depth should perturb both the O(2) and the NO concentrations at the level of the cells. The model predicted that the rate of NO(2)(-) production should be nearly constant, and that the net rate of NO production should decline sharply with increases in liquid depth, in excellent agreement with the experimental findings. In further agreement with available results for macrophage cultures, the model predicted that net NO synthesis should be more sensitive to liquid depth than to the O(2) concentration in the headspace. The main reason for the decrease in NO production with increasing liquid depth was the modulation of NO synthesis by NO, with O(2) availability playing only a minor role. The model suggests that it is the ability of iNOS to consume NO, as well as to synthesize it, that creates very sensitive feedback control, setting an upper bound on the NO concentration of approximately 1 microM. The effect of NO consumption by other possible pathways (e.g., NOD) would be similar to that of iNOS, in that it would help limit net NO production. The O(2) utilized during enzymatic NO consumption is predicted to make the O(2) demands of activated macrophages much larger than those of unactivated ones (where iNOS is absent); this remains to be tested experimentally.  相似文献   

13.
The bacterial heme protein cytochrome ? from Alcaligenes xylosoxidans (AXCP) reacts with nitric oxide (NO) to form a 5-coordinate ferrous nitrosyl heme complex. The crystal structure of ferrous nitrosyl AXCP has previously revealed that NO is bound in an unprecedented manner on the proximal side of the heme. To understand how the protein structure of AXCP controls NO dynamics, we performed absorption and Raman time-resolved studies at the heme level as well as a molecular computational dynamics study at the entire protein structure level. We found that after NO dissociation from the heme iron, the structure of the proximal heme pocket of AXCP confines NO close to the iron so that an ultrafast (7 ps) and complete (99 +/- 1%) geminate rebinding occurs, whereas the proximal histidine does not rebind to the heme iron on the timescale of NO geminate rebinding. The distal side controls the initial NO binding, whereas the proximal heme pocket controls its release. These dynamic properties allow the trapping of NO within the protein core and represent an extreme behavior observed among heme proteins.  相似文献   

14.
We have used a variety of theoretical and experimental techniques to study the role of four basic amino acids–Arginine, Lysine, Ornithine and L-2,4-Diaminobutyric acid–on the structure, flexibility and sequence-dependent stability of DNA. We found that the presence of organic ions stabilizes the duplexes and significantly reduces the difference in stability between AT- and GC-rich duplexes with respect to the control conditions. This suggests that these amino acids, ingredients of the primordial soup during abiogenesis, could have helped to equalize the stability of AT- and GC-rich DNA oligomers, facilitating a general non-catalysed self-replication of DNA. Experiments and simulations demonstrate that organic ions have an effect that goes beyond the general electrostatic screening, involving specific interactions along the grooves of the double helix. We conclude that organic ions, largely ignored in the DNA world, should be reconsidered as crucial structural elements far from mimics of small inorganic cations.  相似文献   

15.
Steady-state gradients of NO within tissues and cells are controlled by rates of NO synthesis, diffusion, and decomposition. Mammalian cells and tissues actively decompose NO. Of several cell lines examined, the human colon CaCo-2 cell produces the most robust NO consumption activity. Cellular NO metabolism is mostly O2-dependent, produces near stoichiometric NO3-, and is inhibited by the heme poisons CN-, CO (K(I) approximately 3 microM), phenylhydrazine, and NO and the flavoenzyme inhibitor diphenylene iodonium. NO consumption is saturable by O2 and NO and shows apparent K(M) values for O2 and NO of 17 and 0.2 microM, respectively. Mitochondrial respiration, O2*-, and H2O2 are neither sufficient nor necessary for O2-dependent NO metabolism by cells. The existence of an efficient mammalian heme and flavin-dependent NO dioxygenase is suggested. NO dioxygenation protects the NO-sensitive aconitases, cytochrome c oxidase, and cellular respiration from inhibition, and may serve a dual function in cells by limiting NO toxicity and by spatially coupling NO and O2 gradients.  相似文献   

16.
It appears thatthe expression of vascular endothelial growth factor (VEGF) isincreased during brain injury and thus may contribute to disruption ofthe blood-brain barrier (BBB) during cerebrovascular trauma. The firstgoal of this study was to determine the effect of VEGF on permeabilityof the BBB in vivo. The second goal was to determine possible cellularmechanisms by which VEGF increases permeability of the BBB. We examinedthe pial microcirculation in rats using intravital fluorescencemicroscopy. Permeability of the BBB [clearance of FITC-labeleddextran of molecular mass 10,000 Da (FITC-dextran-10K)] anddiameter of pial arterioles were measured in absence and presence ofVEGF (0.01 and 0.1 nM). During superfusion with vehicle (saline),clearance of FITC-dextran-10K from pial vessels was minimal anddiameter of pial arterioles remained constant. Topical application ofVEGF (0.01 nM) did not alter permeability of the BBB toFITC-dextran-10K or arteriolar diameter. However, superfusion with VEGF(0.1 nM) produced a marked increase in clearance of FITC-dextran-10Kand a modest dilatation of pial arterioles. To determine a potentialrole for nitric oxide and stimulation of soluble guanylate cyclase inVEGF-induced increases in permeability of the BBB and arteriolardilatation, we examined the effects ofNG-monomethyl-L-arginine(L-NMMA; 10 µM) and1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1.0 µM), respectively.L-NMMA and ODQ inhibitedVEGF-induced increases in permeability of the BBB and arteriolardilatation. The findings of the present study suggest that VEGF, whichappears to be increased in brain tissue during cerebrovascular trauma, increases the permeability of the BBB via the synthesis/release ofnitric oxide and subsequent activation of soluble guanylate cyclase.  相似文献   

17.
Two new triterpenes, 29-hydroxydehydrotumulosic acid (1) and 29-hydroxydehydropachymic acid (2), together with six known compounds, dehydropachymic acid (3), dehydrotumulosic acid (4), 29-hydroxypolyporenic acid C (5), polyporenic acid C (6), tumulosic acid (7), and pachymic acid (8), were isolated from the dried sclerotia of Poria cocos. In the in vitro bioassays, these isolated compounds reduced, in a dose-dependent manner, nitric oxide (NO) production from lipopolysaccharide (LPS)-induced RAW 264.7 cells, with compounds 5 and 6, the IC(50) values of which were 16.8±2.7 and 18.2±3.3 μM, respectively, exhibiting the greatest inhibition activity. Further Western blot analysis conducted on cells pre-treated with compounds 5 and 6, and luciferase assays on activator protein 1-dependent gene expression revealed that the inhibited NO release was attributed to the reduced expression of iNOs (=inducible NO synthase) enzymes, which might be regulated via the blockade of activator protein-1 signaling pathway.  相似文献   

18.
J E Morley  J F Flood 《Life sciences》1992,51(16):1285-1289
These studies demonstrate that the competitive antagonist of nitric oxide synthesis, L-NG-nitro-arginine methyl ester (NO Arg ME), produces an L-arginine reversible decrease in food intake in mice. NO Arg ME also blocked the feeding effect of the potent orexigenic peptide, neuropeptide Y. NO Arg ME produced weight loss when administered over 5 days. The studies suggest that nitric oxide is a physiological modulator of food intake and that nitric oxide synthetase inhibitors may be useful in the management of obesity.  相似文献   

19.
20.
Adaptation to hypoxic stress provokes activation of the hypoxia-inducible-factor-1 (HIF-1) which mediates gene expression of, e.g., erythropoietin or vascular endothelial growth factor. Detailed information on signaling pathways that stabilize HIF-1 is missing, but reactive oxygen species degrade the HIF-1 alpha subunit, whereas phosphorylation causes its stabilization. It was believed that hypoxia resembles the only HIF-1 inducer but recent evidence characterized other activators of HIF-1 such as nitric oxide (NO). Herein, we concentrated on NO-evoked HIF-1 induction as a heretofore unappreciated inflammatory response in association with massive NO formation. We demonstrated that S-nitrosoglutathione induces HIF-1 alpha accumulation and concomitant DNA binding. The response was attenuated by the kinase inhibitor genistein and blockers of phosphatidylinositol 3-kinase such as Ly 294002 or wortmannin. Whereas mitogen-activated protein kinases were not involved, we noticed phosphorylation/activation of Akt in correlation with HIF-1 alpha stabilization. NO appears to regulate HIF-1 alpha via the PI 3K/Akt pathway under normoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号