首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Thrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks.

Objective

We sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve.

Methods

Tissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers.

Results

The addition of the P2Y12 receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E1 (PGE1), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE1 or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE1 mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one.

Conclusions

Procoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types - plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation.  相似文献   

2.
In human platelet-rich plasma (PRP) eicosapentaenoic acid (EPA) inhibited platelet aggregation induced by a stable analogue of PGH2 (U46619), arachidonic acid, collagen or ADP. EPA was more potent than oleic, linoleic, α-linolenic or γ-linolenic acids. In aspirin-treated platelets, aggregation induced by U46619 was inhibited to a similar extent by arachidonic acid or by EPA over a range of concentrations of 0.05–0.3 mM. EPA incubated with PRP did not induce the generation of a thromboxane (TXA)-like activity; indeed it prevented the formation of TXA2 induced by arachidonic acid or by collagen. The anti-aggregatory activity of EPA was not influenced by inhibitors of cyclo-oxygenase and lipoxygenase. The anti-aggregatory action of EPA may be caused by a rapid occupancy by EPA of TXA2/PGH2 “receptors” on platelet membrane as well as by a slower displacement of arachidonic acid from platelet phospholipids by chemically unchanged molecules of EPA.Not all samples of PRP were irreversibly aggregated by PGH2, but in those that were, PGH3 also induced an immediate dose-dependent but reversible aggregation. After a 4 min incubation of non-aggregating doses of PGH2 or PGH3 (100–300 nM) with PRP a stable anti-aggregatory compound was detected. The inhibitory activity produced from PGH3 was apparently more potent (ca 10 times) than that obtained from PGH2. The anti-aggregating compounds were identified by TLC and GLC-MS as PGD2 and PGD3. The apparent difference of potency between PGD2 and PGD3 was attributed to the concurrent production of PGE2 and PGE3. PGE2 prevented the inhibitory effect of PGD2 whereas PGE3 did not affect the activity of PGD3.It is concluded that one of the reasons for the low incidence of myocardial infarction in Eskimos could be that the pro-aggregatory arachidonic acid is replaced in their phospholipids by the anti-aggregatory EPA.  相似文献   

3.
In gastrointestinal research the in vitro release of prostaglandins from incubated or cultured biopsies is a widely used method to estimate prostaglandin synthesis. We therefore investigated the rate limiting mechanisms of PGE2 release in organ cultured gastric mucosa of the rabbit, determining PGE2 secretion from organ cultured mucosal biopsies by radioimmunoassay and prostaglandin synthesizing capacity by in vitro incubation of mucosal homogenate or microsomes with [14C]-arachidonic acid.Freshly taken biopsies secreted PGE2 at an initial high rate, that decreased during the following 4 hrs of culture. This PGE2 release was dose dependently reduced by inhibitors of the prostaglandin cyclooxygenase. 5mM acetylsalicylic acid (ASA) maximally suppressed PGE2 secretion to 7% of controls, and the inhibition by ASA was quantitatively similar at every given culture period. PGE2 release was markedly increased by carbenoxolone but was only slightly activated by extracellular calcium and the Ca++-ionophore A23187. However, Ca++/A23187 were unable to maintain PGE2 secretion at the initial rate.PGE2 secretion was undisturbed in calcium-free medium but was reduced to 50–60% of controls by excess EDTA. The intracellular calcium chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N′,N′,-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) similarly inhibited PGE2 release to 72% of controls. In contrast, PGE2 release was unaffected by the intracellular calcium antagonist 3,4,5-trimethylene-bis(4-formylpyridinium bromide) dioxime (TMB-8), the calmodulin antagonists N-(6-aminohexyl)-1-5-chloro-1-naphthalenesulfonamide (W-7) and calmidazolium (compound R24571) or various direct inhibitors of endogenous arachidonic acid release like tetracaine, bromophenacyl bromid, neomycine or low dose quinacrine, indicating that the reduction of PGE2 release by EDTA or BAPTA may be mediated by mechanisms different from substrate release. In contrast, an inhibition of PGE2 secretion by quinacrine at high concentrations (≥ 0.8mM) was attributed to a direct inhibition of the prostaglandin cyclooxygenase, similar to ASA. Finally, the reduction of the prostaglandin synthesizing capacity by ASA was strongly correlated with the inhibition of PGE2 secretion, also at low concentrations and minor degrees of inhibition.From these data we conclude, that the activity of the prostaglandin cyclooxygenase is rate limiting for PGE2 secretion from organ cultured mucosal biopsies rather than arachidonic acid release by a phospholipase A2. This should be considered for interpretation of studies based on prostaglandin release from cultured mucosa.  相似文献   

4.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

5.
Dibutyryl-cAMP but not dibutyryl-cGMP inhibited platelet aggregation and release of 14C-serotonin and ADP when induced by collagen and arachidonate but not when induced by the endoperoxide PGG2* (TXB2) induced by addition of collagen to platelet rich plasma (PRP) was decreased by dibutyryl-cAMP and agents known to increase the concentration of cAMP (PGE1, PGD2, theophylline and acetyl choline).PGE2 in concentrations known to decrease cAMP levels increased the formation of TXB2 whereas concentrations of PGE2 known to increase cAMP levels decreased the amount of TXB2 formed. That this was due to an effect on the cyclooxygenase was indicated by inhibition of the transformation of arachidonic acid by DB-cAMP and by high concentrations of PGE2. Additional support for regulation of the cyclo-oxygenase by cAMP and its relevance to platelet aggregation was obtained by demonstrating stimulation of PGG2 induced aggregation by low concentrations of PGE2 and the absence of this effect in the presence of a cyclo-oxygenase inhibitor.  相似文献   

6.
Uterine cervical tissue was obtained from pregnant women undergoing abortion of caesarean section. The tissue was incubated in Krebs-Ringer bicarbonate buffer containing prostaglandin (PG) E2 and radioactive precursors for collagen (3H proline) and proteoglycans (3H glucosamine). After incubation the tissue-bond radioactivity was determined and related to the tissue dry weight.The effect of PGE2 on te net tissue radiolabelling varied with the gestational age and with the cervical status at operation. In early 1st trimester PGE2 increased the labelling with 3H proline but decreased that with 3H glucosamine. From the 12th week of gestation until term pregnancy conditions were reversed, i.e. the incorporation of 3H proline was reduced and that of 3H glucosamine was augmented following treatment with PGE2. After start of labour and rupture of the membrane, however, PGE2 diminished the labelling with 3H proline as well as 3H glucosamine. It is suggested that PGE2 is a modulator of biochemical events which underlie cervical ripening.  相似文献   

7.
Anti-platelet aggregating and disaggregating activities of the chemically stable 6,9-methano prostaglandin I2 (6,9-methano PGI2) were investigated. 6,9-Methano PGI2 inhibited ADP-induced platelet aggregation in PRP from humans, rabbits and rats. 6,9-Methano PGI2 also inhibited rabbit platelet aggregation induced by ADP, collagen, thrombin, arachidonic acid and 11,9-epoxy-methano PGH2. Antiaggregating activities of 6,9-methano PGI2 were 0.3 to 2.0 times greater than those of PGE1. 6,9-Methano PGI2 facilitated platelet disaggregation in a dose related manner. Antiaggregating and disaggregating activities of 6,9-methano PGI2 were markedly enhanced by incubation with the phosphodiesterase inhibitor, theophylline.  相似文献   

8.
Formation of prostaglandin D2 (PGD2) during the aggregation of platelets was determined, employing a specific bioassay. PGD2 was synthesized in human platelet rich plasma (PRP) in response to thrombin, collagen and epinephrine. Indomethacin pretreatment abolished the biosynthesis of PGD2. When thrombin treated PRP was incubated for different periods of time and denatured in the presence of SnCl2 to prevent the formation of PGD2 from endoperoxides during the extraction procedure, PGD2 formation was noted within the first minute of incubation and reached a peak level after 4 minutes. PGD2 from thrombin stimulated PRP was conclusively identified by gas chromatography-mass spectrometry.The formation of PGD2 during platelet aggregation could represent a mechanism of feedback inhibition of aggregation.  相似文献   

9.
Myometrial low speed supernatant prepared from non-pregnant rhesus uteri was incubated with 3H-Prostaglandin (PG)E1 with or without addition of unlabelled prostaglandins. The uptake of 3H-PGE1 was inhibited in a dose dependent fashion by PGE2>PGE1>PGA1>PGF=PGA1>PGB1=PGB2≥PGD2. PGE1 metabolites inhibited 3H-PGE1 binding in the following order: 13,14-dihydro-PGE1>13,14-dihydro-15-keto-PGE1=15-keto-PGE1. The specific binding of 3H-PGE1 and 3H-PGF was similarly affected by the temperature and time of incubation. Equilibrium binding constants determined using rhesus uteri obtained during the luteal phase of the menstrual cycle indicate the presence of high affinity PGE1 binding sites with an average (n=3) apparent dissociation constant of 2.2 × 10−9M and a lower affinity PGE1 binding site with a Kd ≅ 1 × 10−8M. No high affinity — low capacity 3H-PGF sites could be demonstrated.Relative uterine stimulating potencies of some natural prostaglandins and prostaglandin analogs tested after acute intravenous administration in mid-pregnant rhesus monkeys corresponded with the PGE1 binding inhibition of the respective compound. The uterine stimulating potencies of the prostaglandin analogs tested were: (15S)-15-methyl-PGE2=16,16-dimethyl-PGE2>17-phenyl-18,19,20-trinor-PGE2>16 phenoxy-17,18,19,20-tetranor-PGF=PGE2=PGE1=(15S)-15-methyl-PGF>PGF.  相似文献   

10.
A radioimmunoassay procedure for the determination of PGE1, PGE2, and PGF2α is presented. The procedure involves the pre-precipitation of each prostaglandin specific antiserum with the precipitating antisera (ARGG), and the use of these antisera mixtures in assaying for PGE1, PGE2, and PGF2α. Applicability of the methods to unextracted plasma, serum and myocardial homogenate has been demonstrated through tests of specificity, recovery, reproducability and parallelism. A mathematical correction for cross-reactivity between PGE1 and PGE2, and their opposing antisera is given. To demonstrate the utility of the methodology in differentiation of experimental variables, prostaglandin concentrations in unincubated serum, incubated serum, and the rate of prostaglandin production in serum of dogs are given.  相似文献   

11.
Renal tubular epithelial cells isolated from dog and pig kidney (MDCK and LLC-PK1, respectively) transport water and electrolytes in culture. MDCK cells resemble collecting tubule cells by additional, but not all, morphologic and biochemical criteria. It has previously been reported that PGE2 appears to regulate transport activity by MDCK cells as well as their proliferation. We investigated prostaglandin biosynthesis by MDCK and LLC-PK1 cells and assessed the effects of peptide hormones, bradykinin and vasopressin, on the cells' prostaglandin biosynthesis. Thin-layer chromatography of radioactive products released by MDCK cells labelled with octatritiated of [14C] arachidonic acid indicated the presence of materials comigrating with PGE2, PGI2 (detected as 60oxo0PGF1α) and PGF2α, in decreasing order of abundance. Maclofenamate inhibited the biosynthesis of all radioactive peaks comigrating with PGs, thus confirming their identities as product of fatty acid cyclo-oxygenase activity. The chemical identities of [3H] PGE2 and [3H] 6-oxo-PGF1α made by the cells were further confirmed by treatment with KOH. Radioimmunoassay of culture fluids incubated with MDCK cells verified that PGE2 was the most abundant prostaglandin. Tranylcypromine, thought to be a specific inhibitor of prostacyclic synthetase, inhibited PGE2 as well as PGI2 biosynthesis indicating a lack of specificity of the inhibitor. The observation of PGE2 and PGF2α as respectively the most and least abundant prostaglandinds made by MDCK was in disagreement with results from another laboratory in which the reverse order of abundance was found. This suggests the presence of more than one cell line identified as MDCK but having different biochemical properties.Bradykinin stimulated acylhydrolase activity as well as PGE2 and PGI2 biosynthesis in MDCK cells while vasopressin had little or no effect. These results support the hypothesis that bradykinin's natriuretic effects may be mediated by prostaglandinds and that vasopressin is unlikely to acutely stimulate prostaglandin biosynthesis in collecting tubule cells invivo. Endogenous PGE2 may also regulate the proliferation of MDCK cells in culture.In contrast to MDCK cells, LLC-PK1 cells lacked significant prostaglandin biosynthetic capability as documented by radiometric thin-layer chromatography and radioimmunoassay. This suggests that prostaglandins may have a modulatory rather than an obligatory role in regulating transport activity by tubular epithelial cells.  相似文献   

12.
Separation and quatification of prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) were achieved using reverse phase high performance liquid chromatography (HPLC). Panacyl bromide (p-(9-anthroyloxy)phenacyl bromide) (PAB) derivatives of PGE2 and PGE1 were prepared. Reverse phase HPLC using a linear gradient of 56% to 80% acetonitrile in water containing 0.10% acetic acid gave baseline resolution of the two derivatives. A 3 um diameter particle, C18 column provided good resolution and reproducible recoveries. Human synovial tissue cells were incubated with the precursor fatty acids for PGE1 or PGE2 and stimulated with a crude Interleukin 1 (IL-1) preparation. Cells grown in the presence of dihomogammalinolenic acid (DGLA), the precursor for PGE1, made significantly more PGE1 than cells grown in control medium or in the presence of arachidonic acid, precursor for PGE2. PGE2 synthesis was reduced when DGLA was added to cells (resting or IL-1-stimulated).  相似文献   

13.
Prostaglandin D2 was found to be a potent inhibitor of platelet aggregation. Aggregation of human platelets by ADP, collagen and prostaglandin G2 was inhibited more strongly by PGD2 than by PGE1. Although ADP-induced aggregation of rabbit platelets was inhibited more strongly by PGE1 than by PGD2 the latter prostaglandin gave a more long-lasting inhibitory effect on platelet aggregation following intravenous or oral administration. These results coupled with the finding that PGD2 has less hypotensive effects on the cardiovascular system than PGE1 suggest the possible use of PGD2 as an antithrombotic agent.  相似文献   

14.
Prostaglandin D2 was found to be a potent inhibitor of platelet aggregation. Aggregation of human platelets by ADP, collagen and prostaglandin G2 was inhibited more strongly by PGD2 than by PGE1. Although ADP-induced aggregation of rabbit platelets was inhibited more strongly by PGE1 than by PGD2 the latter prostaglandin gave a more long-lasting inhibitory effect on platelet aggregation following intravenous or oral administration. These results coupled with the finding that PGD2 has less hypotensive effects on the cardiovascular system than PGE1 suggest the possible use of PGD2 as an antithrombotic agent.  相似文献   

15.
We have reported tha allicin, a constituent of garlic oil, has no effect on the activities of platelet cyclooxygenase or thromboxane synthase, or vascular PGI2 synthase. The effect of allicin on glutathione (GSH) dependent PGH2 to PGE2 isomerase is unknown. We therefore studied the effect of allicin on PGE2 biosynthesis in a murine mammary adenocarcinoma cell line (No 4526). Intact or sonicated cells were incubated with either 14C-arachidonic acid (AA) or 14C-PHG2, respectively. Following metabolism, products were extracted, separated by TLC and analyzed by radiochromatographic scan. PGE2 was predominantly formed with minimal amounts of PGF and PGD2. Formation of 6-keto-PGF or TXB2 was not detected indicating the absence of TXA2 and PGI2 synthase activity. Indomethacin and ibuprofen inhibited the PGE2 formation (p < 0.05). The enzymatic PGE2 formation in sonicates was blocked by depletion of the cellular non-protein thiols by buthionine sulfoximine and was shown to be dependent on GSH. Allicin, over the range of 10–1000 μM, inhibited the formation of PGE2 in cells exposed to 2.0 μM 14C-AA for 20 min. and in sonicated cells incubated with 20.0 μM 14C-PGH2 for 2 min (p < 0.05). Allicin did not alter cyclooexygenase-mediated oxygen utilization in ram seminal vessicle microsomes, suggesting that allicin selectively inhibits the GSH-dependent PGH2 to PGE2 isomerase in this adenocarcinoma cell line.  相似文献   

16.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2, washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 × 10?5 M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10?7 M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

17.
Methods for the evaluation of competitive interactions at receptors associated with platelet activation and inhibition using aggregometry of human PRP have been developed. The evidence supports the suggestion that PGE1 and PGI2 share a common receptor for inhibition of platelet reactivity, but only a portion (if any) of the aggregation stimulation associated with PGE2 is the result of PGE2 binding (without efficacy) to this receptor. PGE2 (@.3–20 μ ) is an effective antagonist of PGE1, PGI2, producing a shift of about one order of magnitude in the IC50-values obtained from complete aggregation inhibition dose response curves. The antagonism of PGD2 inhibition is particularly notable, 80 n PGE2 levels are detectable. This and other actions of PGE2 indicate another platelet receptor for PGE2. PGE1 acts at both the PGE2 and PGI2 receptor. Other substances showing PGI2-like actions only at high doses (1–30 μ ), display additive responses with PGI2 indicative of decreased affinity for the I2/E1 receptor and the absence of PGE2-like aggregation stimulation activity.PGI2 methyl ester has intrinsic inhibitory action not associated with in situ ester hydrolysis. The methyl ester is dissaggregatory showing particular specificity for inhibition of release and second wave aggregation.  相似文献   

18.
Cyclic AMP production by freshly isolated cells, from a 32P-induced transplantable rat osteogenic sarcoma, was stimulated by PGE1, PGE2 and to a less extent by PGF and PGA2. In the case of PGE2, the cyclic AMP content of cells was miximal within 5 min. The 13, 14-dihydro derivatives of PGE1, PGE2 and PGF had approximately 40% of the activity of the parent prostaglandin whilst, in every case, the metabolites (15-keto and 13,14-dihydro-15-keto) had very little activity. Two prostaglandin endoperoxide analogues (U44069 and U46619) had only 10% of the activity of an equimolar dose of PGE2. The data presented in this paper demonstrates similarities between the responses of these cells and cells derived from bony tissue in terms of the ability of prostaglandins to stimulate bone resorption in tissue culture.  相似文献   

19.
Dihomo-γ-linolenate effectively prevented the irreversible aggregation of human platelets induced by collagen or epinephrine. Also, platelets from rats which received daily oral doses of dihomo-γ-linolenate showed significant reductions in platelet aggregatory responses to collagen and ADP which were attributable to increases in plasma and platelet ratios of dihomo-γ-linolenate to arachidonate. Similar results were obtained in rabbits. This data, together with that of enzymatic studies supports a hypothesis that oral ingestion of dihomo-γ-linolenate may effectively prevent arterial thrombosis in man by causing a redirection of platelet prostaglandin biosynthesis. Thus PGE1 and its non-aggregatory endoperoxide intermediate (PGR1) are formed at the expense of PGE2 and LASS endoperoxide which together may induce platelet thrombus formation.  相似文献   

20.
Low concentrations of ethanol enhanced prostaglandin (PG) E1-stimulated adenosine-3′, 5′-cyclic monophosphate (cAMP) accumulation in human platelets and in rat brain slices. Ethanol also potentiated platelet synthesis of PGE1 from dihomo-gamma-linolenic acid. These interactions may derive from the fluidizing effects of ethanol on lipid-containing cell membranes, and suggest a possible role for PGE1 as a mediator of certain acute effects of ethanol. The derivative possibility that “down regulation” of PGE1 systems is involved in the development of ethanol dependence is supported by data showing that PGE1 administered to mice following chronic exposure to ethanol reduced withdrawal syndrome intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号