首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth, lipid peroxidation, H2O2 produciton and the response of the antioxidant enzymes and metabolites of the ascorbate glutathione pathway to oxidative stress caused by two concentrations (50 and 100 µM) of Cr(III) and Cr(VI) was studied in 15 day old seedlings of sorghum (Sorghum bicolor (L.) Moench cv CO 27) after 10 days of treatment. Cr accumulation in sorghum plants was concentration and organ dependant. There was no significant growth retardation of plants under 50 µM Cr(III) stress. 100 µM Cr(VI) was most toxic of all the treatments in terms of root and leaf growth and oxidative stress. 50 µM Cr(VI) treated roots exhibited high significant increase in superoxide dismutase (SOD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) (p < 0.01) and significant increases in catalse (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) (p < 0.05). A high increase in ascorbic acid (AA) level was seen in roots of 50 µM Cr(VI) treated plants in comparison with control. Levels of reduced glutathione (GSH) showed a varied and complex response in all the treatments in both plant parts. GSH/GSSG ratio was not affected by Cr(III) treatment in leaves, in contrast, roots exhibited significant reduction in the ratio. Results indicate that GSH depletion increased sensitivity to oxidative stress (Cr(VI) roots and leaves and Cr(III) 100 µM roots) and AA in tandem with APX compensated for GSH depletion by acting directly on H2O2 and the mechanism of defensive response in roots as well as leaves varied in its degree and effectiveness due to the concentration dependant differences observed in translocation of the element itself, reactive oxygen species (ROS) generation and enzyme inhibition based on the oxidation state supplied to the plants.  相似文献   

2.
Abstract Effect of ammonium on in vivo activity of nitrate reductase in roots, shoots and leaves of maize (Zea mays L.) seedlings was studied in relation to light/dark conditions and EDTA supply. Supply of 5 mM (NH4)2SO4 increased the steady state level of enzyme only in leaves and in light, while it had no effect in roots and shoots and in the dark. The substrate induction of enzyme was also little affected by 1 to 10 mM (NH4)2SO4 in roots and shoots. In the leaves the activity in the dark was either inhibited (minus EDTA) or stimulated (plus EDTA) by 5 to 10 mM (NH4)2SO4. The activity was stimulated in the light also in the presence of EDTA at higher concentrations of ammonium. When different concentrations of ammonium were supplied without any exogenous nitrate in the light, the enzyme activity increased at low concentration and was either inhibited or unaffected at higher concentrations depending upon the tissue used. Supply of EDTA with ammonium modified its effect to some extent. It is suggested that the effect of ammonium on nitrate reductase activity depends upon the tissue used and the effective concentration of the ammonium.  相似文献   

3.
Transformed plants of Nicotiana plumbaginifolia Viv. constitutively expressing nitrate reductase (35S-NR) or β-glucuronidase (35S-GUS) and untransformed controls were grown for two weeks in a CO2-enriched atmosphere. Whereas CO2 enrichment (1000 μl · l−1) resulted in an increase in the carbon (C) to nitrogen (N) ratio of both the tobacco lines grown in pots with vermiculite, the C/N ratio was only slightly modified when plants were grown in hydroponic culture in high CO2 compared to those grown in air. Constitutive nitrate reductase (NR) expression per se did not change the C/N ratio of the shoots or roots. Biomass accumulation was similar in both types of plant when hydroponic or pot-grown material, grown in air or high CO2, were compared. Shoot dry matter accumulation was primarily related to the presence of stored carbohydrate (starch and sucrose) in the leaves. In the pot-grown tobacco, growth at elevated CO2 levels caused a concomitant decrease in the N content of the leaves involving losses in NO 3 and amino acid levels. In contrast, the N content and composition were similar in all plants grown in hydroponic culture. The 35S-NR plants grown in air had higher foliar maximum extractable NR activities and increased glutamine levels (on a chlorophyll or protein basis) than the untransformed controls. These increases were maintained following CO2 enrichment when the plants were grown in hydroponic culture, suggesting that an increased flux through nitrogen assimilation was possible in the 35S-NR plants. Under CO2 enrichment the NR activation state in the leaves was similar in all plants. When the 35S-NR plants were grown in pots, however, foliar NR activity and glutamine content fell in the 35S-NR transformants to levels similar to those of the untransformed controls. The differences in NR activity between untransformed and 35S-NR leaves were much less pronounced in the hydroponic than in the pot-grown material but the difference in total extractable NR activity was more marked following CO2 enrichment. Foliar NR message levels were decreased by CO2 enrichment in all growth conditions but this was much more pronounced in pot-grown material than in that grown hydroponically. Since β-glucuronidase (GUS) activity and message levels in 35S-GUS plants grown under the same conditions of CO2 enrichment (to test the effects of CO2 enrichment on the activity of the 35S promoter) were found to be constant, we conclude that NR message turnover was specifically accelerated in the 35S-NR plants as well as in the untransformed controls as a result of CO2 enrichment. The molecular and metabolic signals involved in increased NR message and protein turnover are not known but possible effectors include NO3 , glutamine and asparagine. We conclude that plants grown in hydroponic culture have greater access to N than those grown in pots. Regardless of the culture method, CO2 enrichment has a direct effect on NR mRNA stability. Received: 17 October 1996 / Accepted: 11 February 1997  相似文献   

4.
Growth and biochemical alterations in coffee due to selenite toxicity   总被引:1,自引:0,他引:1  
Mazzafera  Paulo 《Plant and Soil》1998,201(2):189-196
Two experiments were conducted to investigate selenite toxicity in coffee (Coffea arabica cv. Catuaí). In the first aqueous selenite solution (10 µM Na2SeO3) was used to infiltrate leaves of an adult coffee plant. The infiltrated leaves and fruits adjacent to them showed enhanced contents of caffeine and soluble sugars. Amino acid contents were not affected, whereas pigments (chlorophylls, carotenoids and xanthophylls) exhibited a significant decrease. In the second experiment, coffee seedlings were irrigated with aqueous selenite solutions (10,100 and 1000 µM Na2SeO3) and the first and third pairs of leaves were analyzed. Control plants did not receive selenium. The plants were not different in height, but at the highest selenium concentration showed lower dry matter accumulation in roots and leaves, lower leaf area and thicker leaves. Increases in caffeine and soluble sugars were observed in the first pair of leaves at the highest selenium concentration, although selenium content itself increased steadily with increasing solution concentration. Phenols increased in both leaf pairs and pigments decreased in the third pair. Nitrate reductase activity, measured in the second leaf pair, was much lower at all selenium levels. The profile of free amino acid was altered in leaves of plants treated with selenium.  相似文献   

5.
With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5′ phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using 34SO42– also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non‐stress and oxidative stress conditions. However, when germinating on sulfur‐deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.  相似文献   

6.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

7.
Application of different concentrations of cadmium [5, 10, 15, 25 and 50 g(CdCl2) g–1(soil d.m.)] markedly affected leaves of Cajanus cajan (Linn.) Huth. Due to increased Cd content in leaves, stomatal density and size on abaxial epidermis, and the size of stomatal aperture and length and density of trichomes on both leaf epidermes decreased significantly in the treated plants. Net photosynthetic rate and stomatal conductance were reduced significantly at each concentration of cadmium, whereas reduction in intercellular carbon dioxide concentration was significant at 10 g Cd onwards. The contents of chlorophyll a, chlorophyll b and carotenoids were relatively low during early stages of plant development under the effect of Cd. Nitrate content, nitrate reductase activity and protein content were also lower in treated plants, compared with control.  相似文献   

8.
9.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

10.
Factors influencing in vivo nitrate reductase activity in triticale (×Triticosecale Wittmack) primary leaves were investigated. Nitrate reductase activity was found to be a function of reaction time or tissue weight. In the range of 1–10 mm, the optimum slice width for nitrate reductase activity in triticale was found to be 1–2 mm. The optimum exogenous nitrate concentration is 300 mM. Substantial nitrite production was obtained even when exogenous nitrate was omitted from the assay. Of the five low molecular weight organic solvents tested, n-propanol is the most effective in enhancing enzyme activity. The optimum n-propanol concentration is 1% (v/v). The concentration of phosphate buffer (pH 6) does not affect nitrate reductase activity. Enzyme activity drops significantly below or above pH 6. In our system, nitrite production is enhanced by incubating under nitrogen, instead of air. The highest level of in vivo activity of nitrate reductase was found to be 10–15 cm from tip, which is close to the basal meristem of triticale primary leaves. Younger but physiologically mature leaves have higher nitrate reductase activity than old leaves.  相似文献   

11.
Changes in Nitrogen Metabolism of Vigna Radiata in Response to Elevated CO2   总被引:1,自引:0,他引:1  
With the aim to determine the effects of CO2 on nitrogen metabolism mungbean (Vigna radiata) plants were grown from seedling emergence to maturity inside open top chambers under ambient CO2 (CA, 350 ± 25 µmol mol–1) and elevated CO2 (CE, 600 ± 50 µmol mol–1) concentrations at the Indian Agricultural Research Institute, New Delhi. Leaflet blades of the same physiological age were sampled at 20, 35 and 50 d after germination. Total nitrogen concentration in dry mass was consistently lower under CE than in CA. Non-protein nitrogen and protein nitrogen were also decreased under CE Total soluble protein content also decreased up to 35 d after germination under CE. However, a 27 % increase in protein content at 50 d after germination due to CE was observed. A significant decrease in total free amino acid under CE at 20 d after germination was observed. CE also brought about a remarkable decrease in the activity of nitrate reductase in leaves at 20 d after germination but increase at 35 d and 50 d after germination. Nitrogenase activity increased at all growth stages due to CE. Although total harvested leaves of CE plants accumulated more nitrogen, the relative amount of nitrogen on a percentage basis was low, probably due to a comparatively greater accumulation of sugars in the leaves of CE plants.  相似文献   

12.
Five-week-old wheat plants were exposed, under controlled environmental conditions, to 60 nl 1?115NO2 or to purified air. After 48 and 96 h of exposure, leaves, stalks and roots were analysed for 15N-enrichment in α-amino nitrogen of soluble, free amino acids. In addition, the in vitro nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NIR, EC 1.7.7.1) activities were determined in the leaves. NR activity in the leaves decreased continously during the 96-h exposure to purified air. In the leaves exposed to 15NO2, NR activity increased within the first 24 h, then decreased, and reached the level of controls after 96 h. NiR activity in leaves exposed to purified air was almost constant during the 96-h exposure. In leaves exposed to 15NO2, NiR activity increased within the first 48 h, then decreased, and reached the level of controls after 72 h, Exposure to 15NO2 enhanced the total content of soluble, free amino acids in all tissues analysed. Most of this increase was attributed to Glu in the leaves and to Asn plus Gln the α-amino group of soluble, free amino acids was observed in the leaves, the lowest enrichment in the roots. The main labelled amino compounds were Glu (with 8.0%15N enrichment compared to the control), γ-aminobutyric acid (GABA; 7.9%), Ala (7.2%). Ser (6.8%), Asp (5.5%) and Gln (4.6%). Appreciable incorporation of 15 into Asn was not found. After 96 h exposure to 15NO2 the 15N enrichment in the α-amino group of soluble, free amino acids in the leaves declined as compared to the values obtained after 48 h fumigation. The possible pathway and the time course of 15N incorporation into soluble, free amino acids from the 15NO2 absorbed are discussed.  相似文献   

13.
Cowpea [Vigna unguiculata (L.) Walp. cv. Co 4] seedlings were subjected to a weighted irradiance of 3.2 W m-2 s-1 of biologically effective ultraviolet-B radiation (UV-B, 280–320 nm) and the changes in the kinetic and other characteristics of nitrite reductase (NiR) were recorded. The activity of NiR was hampered by 19 % under UV-B irradiation compared to the control. The UV-B treated plants required higher concentrations of nitrate for the induction of NiR synthesis than the controls. The NiR activity decay kinetics showed that the UV-B treatment significantly lowers the t1/2 of the enzyme, thereby indicating a reduced rate of enzyme turnover. The comparison of kinetic characteristics of nitrate reductase (NR) and NiR under UV-B treatment showed that NiR was not so sensitive to UV-B radiation as NR. As shown by enzyme turnover rates, NiR extracted from plants irradiated by UV-B in situ was less sensitive to UV-B radiation than the enzyme extract subjected to in vitro UV-B irradiation. Though NiR was less damaged by UV-B treatment than NR, subtle changes occurred in its kinetic characteristics. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The influence of varying levels of salinity (0, 100, 200 and 400 mM) on the activities of nitrate reductase (NR, E.C. 1.6.6.1), acid phosphatase (ACP, E.C. 3.1.3.2), and alkaline phosphatase (ALP, EC 3.1. 3.1) as well as on nitrate and phosphate uptake and total nitrogen levels in leaves of a true mangrove Bruguiera parviflora was investigated under hydroponic culture conditions. NR activity increased in 100 mM NaCl treated plants, whereas it decreased gradually in 200 and 400 mM treated plants, relative to the controls. Decreased activity of NR by NaCl stress was also accompanied by a decrease in total nitrogen level and nitrate uptake. Decreases in NR activity, nitrate (NO3), and total nitrogen level due to high salinity may be responsible for a decrease in growth and biomass production in this plant. However, salinity caused an increase in both ACP and ALP activity. Activity staining of ACP by native polyacrylamide gel electrophoresis revealed three isoforms: ACP-1, ACP-2, and ACP-3. We observed a preferential enhancement in the ACP-3 isoform by salinity. In order to understand whether the salinity-induced increase in phosphatase activity was due to inhibition in phosphate uptake, we monitored phosphate (Pi) levels in leaves and noted that phosphate levels decreased significantly under salinity. These results suggest that the induction of acid and ALP under salt stress may be due to a phosphorous deficiency.  相似文献   

15.
Effects of sodium on mineral nutrition in rose plants   总被引:2,自引:0,他引:2  
The effects of sodium (Na+) ion concentration on shoot elongation, uptake of ammonium (NH4+) and nitrate (NO3?) and the activities of nitrate reductase (NR) and glutamine synthetase (GS) were studied in rose plants (Rosa hybrida cv. “Lambada”). The results showed that shoot elongation was negatively correlated with sodium concentration, although no external symptoms of toxicity were observed. Nitrate uptake decreased at high sodium levels, specifically at 30 meq litre4 of sodium. As flower development was normal under high saline conditions, this could suggest that nitrogen was being mobilised from shoot and leaf reserves. Ammonium uptake was not affected by any of the salt treatments applied probably because it diffuses through the cell membrane at low concentrations. Nitrate reductase activity was reduced by 50% at 30 meq litre 1 compared with control treatment, probably due to a decrease in the free nitrate related to nitrate uptake pattern. None of the salt treatments used affected total leaf GS activity (both chloroplastic and cytosolic isoforms) or leaf NPK mineral contents. Nitrate reductase activity in leaves increased at 10 meq litre?1 of sodium and GS activity in roots (cytosolic isoform only) followed the same pattern as NR. It is suggested that the activation of both enzymes at low salt level could be attributed to the beneficial effect of increased sulphur in the nutrient solutions.  相似文献   

16.
Supply of aqueous solution of triadimefon (20 mg dm−3) to unstressed green gram plants increased the contents of soluble proteins, amino acids, nitrate and nitrite, and the activity of nitrate reductase in the leaves and nitrate reductase in nodules. The nitrogenase activity in nodules and roots was also increased. Number and fresh mass of nodules and their nitrate and nitrite contents were also higher than those of the controls. In contrast, the UV-B stress (12.2 kJ m−2 d−1) suppressed nodulation and nitrogen metabolism in leaves and roots compared to plants under natural UV-B (10 kJ m−2 d−1). Triadimefon-treated plants did not show such severe inhibitions after exposure to elevated UV-B. Thus triadimefon increased their tolerance to UV-B stress.  相似文献   

17.
Cadmium causes the oxidative modification of proteins in pea plants   总被引:23,自引:0,他引:23  
In pea (Pisum sativum L.) leaves from plants grown in the presence of 50 µm CdCl2 the oxidative production of carbonyl groups in proteins, the rate of protein degradation and the proteolytic activity were investigated. In leaf extracts the content of carbonyl groups measured by derivatization with 2,4‐dinitrophenylhydrazine (DNPH), was two‐fold higher in plants treated with Cd than in control plants. The identification of oxidized proteins was carried out by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis of proteins derivatized with DNPH and immunochemical detection with an antibody against DNPH. The intensity of the reactive bands was higher in plants exposed to Cd than in controls. By using different antibodies some of the oxidized proteins were identified as Rubisco, glutathione reductase, manganese superoxide dismutase, and catalase. The incubation of leaf crude extracts with increasing H2O2 concentrations showed a progressive enhancement in carbonyl content and the pattern of oxidized proteins was similar to that found in Cd‐treated plants. Oxidized proteins were more efficiently degraded, and the proteolytic activity increased 20% due to the metal treatment. In peroxisomes purified from pea leaves a rise in the carbonyl content similar to that obtained in crude extracts from Cd‐treated plants was observed, but the functionality of the peroxisomal membrane was not apparently affected by Cd. Results obtained demonstrate the participation of both oxidative stress, probably mediated by H2O2, and proteolytic degradation in the mechanism of Cd toxicity in leaves of pea plants, and they appear to be involved in the Cd‐induced senescence previously reported in these plants.  相似文献   

18.
Nodules of faba bean (Vicia faba L. cv. Giza 3) plants grown in pots containing clay-loam soil for 90 d have an active nitrate reductase (NR), while the leaves did not show detectable activity. Spraying the plant with increasing concentrations of Al3+ or Cd2+ (0–1000 μM) significantly inhibited the nodules NR activity, the decline being more pronounced in Cd2+ treatment. The specific activity of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) were more prominent in the 60- than in 90-d-old plants; GOT was always higher than GPT. Furthermore, GOT was more sensitive to Al3+ and Cd2+ treatments and its activity was significantly decreased when the metal concentration increased. Also, Cd2+ proved to be more effective than Al3+ in suppressing the GOT activity in the nodules, with less significant effect observed in the leaves. In contrast, GPT was hardly affected by the various metal treatments, particulary in the leaves.  相似文献   

19.
A catalase-deficient mutant (RPr 79/4) and the wild-type (cv. Maris Mink) barley (Hordeum vulgare L.) counterpart, were grown for 3 weeks in high CO2 (0.7%) and then transferred to air and ozone (120 nl 1?1) in the light and shade for a period of 4 days. Leaves and roots were analysed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and glutathione reductase (GR, EC 1.6.4.2) activities. CAT activity in the leaves of the RPr 79/4 catalase-deficient mutant was around 5-10% of that determined in Maris Mink, but in the roots, both genotypes contained approximately the same levels of activity. CAT activity in Maris Mink increased in the leaves after transferring plants from 0.7% CO2 to air or ozone, reaching a maximum of 5-fold, after 4 days in shade and ozone. For the catalase-deficient mutant, only small increases in CAT activity were observed in light/air and light/ozone treatments. In the roots, CAT activity decreased consistently in both genotypes, after plants were transferred from 0.7% CO2. The total soluble SOD activity in the leaves and roots of both genotypes increased after plants were transferred from 0.7% CO2. The analysis of SOD isolated from leaves following non-denaturing PAGE, revealed the presence of up to eight SOD isoenzymes classified as Mn-SOD or Cu/Zn-SODs; Fe-SOD was not detected. Significant changes in Mn- and Cu/Zn-SOD isoenzymes were observed; however, they could not account for the increase in total SOD activity. In leaves, GR activity also increased in Maris Mink and RPr 79/4, following transfer from 0.7% CO2; however, no constant pattern could be established, while in roots, GR activity was reduced after 4 days of the treatments. The data suggest that elevated CO2 decreases oxidative stress in barley leaves and that soluble CAT and SOD activities increased rapidly after plants were transferred from elevated CO2, irrespective of the treatment (light, shade, air or ozone).  相似文献   

20.
We have subjected peas (Pisum sativum L.) to four different oxidative stresses: cold conditions (4 °C) in conjunction with light, treatment with paraquat, fumigation with ozone, and illumination of etiolated seedlings (greening). In crude extracts of leaves from stressed plants, an increase (up to twofold) in activity of glutathione reductase (GR) was observed which was consistent with previous reports from several laboratories. In all cases, except for ozone fumigation, the increase in activity was not due to an elevation in the steady-state levels of GR protein. None of the applied stresses had any effect on steady-state levels of GR mRNA. In contrast to the small increase in GR activity, the K m of GR for glutathione disulphide showed a marked decrease when determined for extracts of stressed leaves, compared with that from unstressed plants. This indicates that GR from stressed plants has an increased affinity for glutathione disulphide. The profile of GR activity bands fractionated on non-denaturing acrylamide gels varied for extracts from differently stressed leaves and when compared with GR from unstressed plants. The changes in GR-band profiles and the alteration in the kinetic properties are best explained as changes in the isoform population of pea GR in response to stress.Abbreviations GR glutathione reductase - GSSG glutathione disulphide - Rubisco Ribulose-1,5-bisphosphate carboxylase-oxygenase - RNase A/T1 ribonucleases A and T1 We are grateful to Prof. Alan Wellburn and Dr. Phil Beckett (Division of Biological Sciences, University of Lancaster, UK) for providing ozone-fumigated material and Dr. Jeremy Harbinson for providing material grown at 4° C. This work was supported by a grant-in-aid to the John Innes Institute from the Agricultural and Food Research Council. E.A.E. and C.E. gratefully acknowledge the support of a John Innes Foundation studentship and a European Molecular Biology Organisation Fellowship respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号