首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CENP-B is a widely conserved centromeric satellite DNA-binding protein, which specifically binds to a 17-bp DNA sequence known as the CENP-B box. CENP-B functions positively in the de novo assembly of centromeric nucleosomes, containing the centromere-specific histone H3 variant, CENP-A. At the same time, CENP-B also prevents undesired assembly of the CENP-A nucleosome through heterochromatin formation on satellite DNA integrated into ectopic sites. Therefore, improper CENP-B binding to chromosomes could be harmful. However, no CENP-B eviction mechanism has yet been reported. In the present study, we found that human Nap1, an acidic histone chaperone, inhibited the non-specific binding of CENP-B to nucleosomes and apparently stimulated CENP-B binding to its cognate CENP-B box DNA in nucleosomes. In human cells, the CENP-B eviction activity of Nap1 was confirmed in model experiments, in which the CENP-B binding to a human artificial chromosome or an ectopic chromosome locus bearing CENP-B boxes was significantly decreased when Nap1 was tethered near the CENP-B box sequence. In contrast, another acidic histone chaperone, sNASP, did not promote CENP-B eviction in vitro and in vivo and did not stimulate specific CENP-B binding to CENP-A nucleosomes in vitro. We therefore propose a novel mechanism of CENP-B regulation by Nap1.  相似文献   

2.
Centromere protein B (CENP-B) is a constitutive protein that binds to a highly conserved 17 bp motif located at most mammalian centromeres. To determine whether disruption of this gene affects chromosome segregation in male germ cells, we evaluated the frequencies of disomic and diploid sperm in CENP-B heterozygous and homozygous null mice using the mouse epididymal sperm aneuploidy (m-ESA) assay, a multicolor FISH method with probes for chromosomes X, Y and 8. The specificity and sensitivity of the m-ESA assay was demonstrated using Robertsonian (2.8) translocation heterozygotes as positive controls for sperm aneuploidy. Our results show that the frequencies of disomic and diploid sperm did not differ significantly between CENP-B heterozygous and homozygous null mice (P≥0.5) or from 129/Swiss isogenic mice (P≥0.5) and B6C3F1 mice (P≥0.2). These findings indicate that CENP-B does not have an essential role during chromosome segregation in male meiosis.  相似文献   

3.
Chikungunya virus-like particles (VLPs) have potential to be used as a prophylactic vaccine based on testing in multiple animal models and are currently being evaluated for human use in a Phase I clinical trial. The current method for producing these enveloped alphavirus VLPs by transient gene expression in mammalian cells presents challenges for scalable and robust industrial manufacturing, so the insect cell baculovirus expression vector system was evaluated as an alternative expression technology. Subsequent to recombinant baculovirus infection of Sf21 cells in standard culture media (pH 6.2–6.4), properly processed Chikungunya structural proteins were detected and assembled capsids were observed. However, an increase in culture pH to 6.6–6.8 was necessary to produce detectable concentrations of assembled VLPs. Since this elevated production pH exceeds the optimum for growth medium stability and Sf21 culture, medium modifications were made and a novel insect cell variant (SfBasic) was derived by exposure of Sf21 to elevated culture pH for a prolonged period of time. The high-pH adapted SfBasic insect cell line described herein is capable of maintaining normal cell growth into the typical mammalian cell culture pH range of 7.0–7.2 and produces 11-fold higher Chikungunya VLP yields relative to the parental Sf21 cell line. After scale-up into stirred tank bioreactors, SfBasic derived VLPs were chromatographically purified and shown to be similar in size and structure to a VLP standard derived from transient gene expression in HEK293 cells. Total serum anti-Chikungunya IgG and neutralizing titers from guinea pigs vaccinated with SfBasic derived VLPs or HEK293 derived VLPs were not significantly different with respect to production method, suggesting that this adapted insect cell line and production process could be useful for manufacturing Chikungunya VLPs for use as a vaccine. The adaptation of Sf21 to produce high levels of recombinant protein and VLPs in an elevated pH range may also have applications for other pH-sensitive protein or VLP targets.  相似文献   

4.
Centromere protein B (CENP-B) is a centromeric DNA-binding protein which recognizes a 17-bp sequence (CENP-B box) in human and mouse centromeric satellite DNA. The African green monkey (AGM) is phylogenetically closer to humans than mice and is known to contain large amounts of alpha-satellite DNA, but there has been no report of CENP-B boxes or CENP-B in the centromere domains of its chromosomes. To elucidate the AGM CENP-B-CENP-B box interaction, we have analyzed the gene structure, expression, biochemical properties, and centromeric localization of its CENP-B. The amino acid sequence deduced from the cloned AGM CENP-B gene was established to be highly homologous to that of human and mouse CENP-B. In particular, the DNA binding and homodimer formation domains demonstrated 100% identity to their human and mouse counterparts. Immunoblotting and DNA mobility shift analyses revealed CENP-B to be expressed in AGM cell lines. As predicted from the gene structure, the AGM CENP-B in the cell extracts exhibited the same DNA binding specificity and homodimer forming activity as human CENP-B. By indirect immunofluorescent staining of AGM mitotic cells with anti-CENP-B antibodies, a centromere-specific localization of AGM CENP-B could be demonstrated. We also isolated AGM alpha-satellite DNA with a CENP-B box-like sequence with CENP-B affinity. These results not only prove that CENP-B functionally persists in AGM cells but also suggest that the AGM genome contains the recognition sequences for CENP-B (CENP-B boxes with the core recognition sequence or CENP-B box variants) in centromeric satellite DNA.  相似文献   

5.
Marshall OJ  Choo KH 《Chromosoma》2012,121(2):169-179
Although centromere protein B (CENP-B) is a highly conserved mammalian centromere protein, its function remains unknown. The presence of the protein is required to form artificial satellite DNA-based centromeres de novo, yet cenpb knockout mice are viable for multiple generations with no mitotic or meiotic defects, and the protein is not present at fully functional neocentromeres. Previous studies have suggested that the presence of functionally redundant paralogues of CENP-B may explain the lack of a phenotype in knockout mice, and the related Tigger-derived (TIGD) family of proteins has been implicated as the most likely candidate for such paralogues. Here, we describe an investigation of the centromere-binding properties of the three TIGD proteins most highly related to CENP-B through phylogenetic analysis through EGFP fusion studies and immunocytochemistry. Although two of the three proteins bound to human centromeres with low affinity when overexpressed as fusion proteins, the strongest candidate, TIGD3, demonstrated no native centromeric binding when using raised antibodies, either in human cells or in cenpb −/− mouse ES cells. We conclude that the existence of functional CENP-B paralogues is highly unlikely and that CENP-B acts alone at the centromere. Based on these data, we suggest a new, meiotic drive model of CENP-B action during centromere repositioning in evolution.  相似文献   

6.
Tigger elements are human DNA transposons homologous to the pogo element of Drosophila melanogaster. They contain an open reading frame for a transposase very similar to the major mammalian centromere protein CENP-B. We found in the horse genome a DNA element (Ecatig3) sharing 88% homology with human Tigger3. The presence of Tigger elements in the horse genome confirms previous data that date these elements before the divergence between Perissodactyla and Primates (80–90 Myr ago). Copy number evaluation indicates that the horse element is much more abundant than its human counterpart. Southern blot analysis demonstrates that Ecatig3 elements are extremely homogeneous; this may indicate that the evolution of this DNA transposon has been driven by some kind of selection and has not been neutral.The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession number AY382599.  相似文献   

7.
CENP-B is a centromere associated protein originally identified in human cells as an 80 kDa autoantigen recognized by sera from patients with anti-centromere antibodies (ACA). Recent evidence indicates that CENP-B interacts with centromeric heterochromatin in human chromosomes and may bind to a specific subset of human alphoid satellite DNA. CENP-B has not been unambiguously identified in non-primates and could, in principal, be a primate-specific alphoid DNA binding protein. In this work, a human genomic DNA segment containing the CENP-B gene was isolated and subjected to DNA sequence analysis. In vitro expression identified the site for translation initiation of CENP-B, demonstrating that it is encoded by an intronless open reading frame (ORF) in human DNA. A homologous mouse gene was also isolated and characterized. It was found to possess a high degree of homology with the human gene, containing an intronless ORF coding for a 599 residue polypeptide with 96% sequence similarity to human CENP-B. 5 and 3 flanking and untranslated sequences were conserved at a level of 94.6% and 82.7%, respectively, suggesting that the regulatory properties of CENP-B may be conserved as well. CENP-B mRNA was detected in mouse cells and tissues and an immunoreactive nuclear protein identical in size to human CENP-B was detected in mouse 3T3 cells using human ACA. Analysis of the sequence of CENP-B revealed a segment of significant similarity to a DNA binding motif identified for the helix-loop-helix (HLH) family of DNA binding proteins. These data demonstrate that CENP-B is a highly conserved mammalian protein that may be a member of the HLH protein family and suggest that it plays a role in a conserved aspect of centromere structure or function.  相似文献   

8.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

9.
The O-antigen (Oag) component of lipopolysaccharide (LPS) is a major virulence determinant of Shigella flexneri and is synthesized by the O-antigen polymerase, WzySf. Oag chain length is regulated by chromosomally encoded WzzSf and pHS-2 plasmid-encoded WzzpHS2. To identify functionally important amino acid residues in WzySf, random mutagenesis was performed on the wzySf gene in a pWaldo-TEV-GFP plasmid, followed by screening with colicin E2. Analysis of the LPS conferred by mutated WzySf proteins in the wzySf-deficient (Δwzy) strain identified 4 different mutant classes, with mutations found in periplasmic loop 1 (PL1), PL2, PL3, and PL6, transmembrane region 2 (TM2), TM4, TM5, TM7, TM8, and TM9, and cytoplasmic loop 1 (CL1) and CL5. The association of WzySf and WzzSf was investigated by transforming these mutated wzySf plasmids into a wzySf- and wzzSf-deficient (Δwzy Δwzz) strain. Comparison of the LPS profiles in the Δwzy and Δwzy Δwzz backgrounds identified WzySf mutants whose polymerization activities were WzzSf dependent. Colicin E2 and bacteriophage Sf6c sensitivities were consistent with the LPS profiles. Analysis of the expression levels of the WzySf-GFP mutants in the Δwzy and Δwzy Δwzz backgrounds identified a role for WzzSf in WzySf stability. Hence, in addition to its role in regulating Oag modal chain length, WzzSf also affects WzySf activity and stability.  相似文献   

10.
Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity.  相似文献   

11.
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein.  相似文献   

12.
Aspartic proteinases form a widely distributed protein superfamily, including cathepsin D, cathepsin E, pepsins, renin, BACE and napsin. Human napsin genes are located on human chromosome 19q13, which comprises napsin A and napsin B. Napsin B has been annotated as a pseudogene because it lacks an in-frame stop codon; its nascent chains are cotranslationally degraded. Until recently, there have been no studies concerning the molecular evolution of the napsin protein family in the human genome. In the present study, we investigated the evolution and gene organization of the napsin protein family. Napsin B orthologs are primarily distributed in primates, while napsin A orthologs are the only napsin genes in other species. The corresponding regions of napsin B in the available sequences from primate species contain an in-frame stop codon at a position equivalent to that of human napsin A. In addition, a rare single-nucleotide polymorphism (SNP) that creates a proper stop codon in human napsin B was identified using HapMap populations. Recombinant protein expression and three-dimensional comparative modeling revealed that napsin B exhibits residual activity toward synthetic aspartic protease substrates compared with napsin A, presumably through a napsin B-specific Arg287 residue. Thus, napsin B was duplicated from napsin A during the early stages of primate evolution, and the subsequent loss of napsin B function during primate evolution reflected ongoing human-specific napsin B pseudogenization.  相似文献   

13.
Prototrophic bacteria grow on M-9 minimal salts medium supplemented with glucose (M-9 medium), which is used as a carbon and energy source. Auxotrophs can be generated using a transposome. The commercially available, Tn5-derived transposome used in this protocol consists of a linear segment of DNA containing an R6Kγ replication origin, a gene for kanamycin resistance and two mosaic sequence ends, which serve as transposase binding sites. The transposome, provided as a DNA/transposase protein complex, is introduced by electroporation into the prototrophic strain, Enterobacter sp. YSU, and randomly incorporates itself into this host’s genome. Transformants are replica plated onto Luria-Bertani agar plates containing kanamycin, (LB-kan) and onto M-9 medium agar plates containing kanamycin (M-9-kan). The transformants that grow on LB-kan plates but not on M-9-kan plates are considered to be auxotrophs. Purified genomic DNA from an auxotroph is partially digested, ligated and transformed into a pir+ Escherichia coli (E. coli) strain. The R6Kγ replication origin allows the plasmid to replicate in pir+ E. coli strains, and the kanamycin resistance marker allows for plasmid selection. Each transformant possesses a new plasmid containing the transposon flanked by the interrupted chromosomal region. Sanger sequencing and the Basic Local Alignment Search Tool (BLAST) suggest a putative identity of the interrupted gene. There are three advantages to using this transposome mutagenesis strategy. First, it does not rely on the expression of a transposase gene by the host. Second, the transposome is introduced into the target host by electroporation, rather than by conjugation or by transduction and therefore is more efficient. Third, the R6Kγ replication origin makes it easy to identify the mutated gene which is partially recovered in a recombinant plasmid. This technique can be used to investigate the genes involved in other characteristics of Enterobacter sp. YSU or of a wider variety of bacterial strains.  相似文献   

14.
Members of the Tc1/mariner superfamily of transposable elements isolated from vertebrates are transpositionally inactive due to the accumulation of mutations in their transposase genes. A novel open reading frame-trapping method was used to isolate uninterrupted transposase coding regions from the genome of the frog species Rana pipiens. The isolated clones were ~90% identical to a predicted transposase gene sequence from Xenopus laevis, but contained an unpredicted, ~180 bp region encoding the N-terminus of the putative transposase. None of these native genes was found to be active. Therefore, a consensus sequence of the transposase gene was derived. This engineered transposase and the transposon inverted repeats together constitute the components of a novel transposon system that we named Frog Prince (FP). FP has only ~50% sequence similarity to Sleeping Beauty (SB), and catalyzes efficient cut-and-paste transposition in fish, amphibian and mammalian cell lines. We demonstrate high-efficiency gene trapping in human cells using FP transposition. FP is the most efficient DNA-based transposon from vertebrates described to date, and shows ~70% higher activity in zebrafish cells than SB. Frog Prince can greatly extend our possibilities for genetic analyses in vertebrates.  相似文献   

15.
Site-directed transposon integration in human cells   总被引:2,自引:1,他引:1       下载免费PDF全文
The Sleeping Beauty (SB) transposon is a promising gene transfer vector that integrates nonspecifically into host cell genomes. Herein, we attempt to direct transposon integration into predetermined DNA sites by coupling a site-specific DNA-binding domain (DBD) to the SB transposase. We engineered fusion proteins comprised of a hyperactive SB transposase (HSB5) joined via a variable-length linker to either end of the polydactyl zinc-finger protein E2C, which binds a unique sequence on human chromosome 17. Although DBD linkage to the C-terminus of SB abolished activity in a human cell transposition assay, the N-terminal addition of the E2C or Gal4 DBD did not. Molecular analyses indicated that these DBD-SB fusion proteins retained DNA-binding specificity for their respective substrate molecules and were capable of mediating bona fide transposition reactions. We also characterized transposon integrations in the presence of the E2C-SB fusion protein to determine its potential to target predefined DNA sites. Our results indicate that fusion protein-mediated tethering can effectively redirect transposon insertion site selection in human cells, but suggest that stable docking of integration complexes may also partially interfere with the cut-and-paste mechanism. These findings illustrate the feasibility of directed transposon integration and highlight potential means for future development.  相似文献   

16.
Insertion sequence IS1 encodes a transframe protein, InsA-B′-InsB, which is produced from two out-of-phase reading frames, insA and B′-insB, by translational frameshifting at a run of adenines. Unless the frameshifting event occurs, the InsA protein is produced from IS1. We found that cells harboring a plasmid carrying an IS1 mutant with a single adenine insertion in the run of adenines contained miniplasmids. Cloning and DNA sequencing analyses of the miniplasmids revealed that they had a deletion extending from an inverted repeat (IR) at the left end of IS1. This indicates that they were generated by IS1-mediated deletion due to efficient production of the InsA-B′-InsB transframe protein that is IS1 transposase. Both the InsA protein and transposase were partially purified as a fusion protein with collagen-LacZ by LacZ-specific affinity column chromatography. The InsA1 and the collagenolyzed InsA1 were found to bind specifically to a 24-bp region within each of the IRs at the ends of IS1. The transposase Tnp1 and the collagenolyzed Tnp1 were found to bind to the sequence with or without IR, but preferentially to that with IR. The nonspecific DNA-binding ability of transposase may be involved in recognition of the target DNA, an important process of transposition of IS1. Both InsA and transposase have the IR-specific DNA binding ability and a common polypeptide segment containing the α-helix-turn-α-helix motif, supporting the previous indication that InsA competes with transposase to bind to IRs and thus becomes a transposition inhibitor. Based on the observations described in this article, we speculate that transposase of IS1 consists of at least two domains, the N-terminal half, which almost entirely overlaps InsA, and the C-terminal half, which almost entirely overlaps B′-InsB. The frameshifting event adds the latter domain to the former to give the transposase activity recognizing IRs and the target sequence to initiate the transposition reaction.  相似文献   

17.
18.
19.
The kinetochore creates chromosomal attachment sites for microtubules. The kinetochore-microtubule interface plays an important role in ensuring accurate transmission of genetic information to daughter cells. Bombyx mori is known to possess holocentric chromosomes, where spindle microtubules attach along the entire length of the chromosome. Recent evidence suggests that CENP-A and CENP-C, which are essential for centromere structure and function in other species, have lost in holocentric insects, implying that B. mori is able to build its kinetochore regardless of the lack of CENP-A and CENP-C. Here we report the identification of three outer kinetochore genes in the silkworm B. mori by using bioinformatics and RNA interference-based screening. While the homologs of Ndc80 and Mis12 have strong similarity with those of other organisms, the five encoded proteins (BmNuf2, BmSpc24, BmSpc25, BmDsn1 and BmNnf1) are highly diverged from their counterparts in other species. Microscopic studies show that the outer kinetochore protein is distributed along the entire length of the chromosomes, which is a key feature of holocentric chromosomes. We also demonstrate that BmDsn1 forms a heterotrimeric complex with BmMis12 and BmNnf1, which acts as a receptor of the Ndc80 complex. In addition, our study suggests that a small-scale RNAi-based candidate screening is a useful approach to identify genes which may be highly divergent among different species.  相似文献   

20.
Bacillus thuringiensis produces insecticidal crystal (Cry) proteins which bind to cell surface receptors on the brush border membrane of susceptible midgut larvae. The toxin-receptor interaction generates pores in midgut epithelial cells resulting in cell lysis. Here, a cDNA encoding membrane-bound alkaline phosphatase from Aedes aegypti (Aa-mALP) midgut larvae, based on the sequence identity hit to Bombyx mori membrane-bound ALP, was amplified by RT-PCR and transiently expressed in Spodoptera frugiperda (Sf9) insect cells as a 58-kDa membrane-bound protein via the baculovirus expression system and confirmed by digestion with phosphatidylinositol-specific phospholipase C and LC-MS/MS analysis. Immunolocalization results showed that Cry4Ba is able to bind to only Sf9 cells-expressing Aa-mALP. Moreover, these cells were shown to undergo cell lysis in the presence of 100 ??g/ml trypsin-treated toxin. Finally, trypan blue exclusion assay also demonstrated an increase in cell death in recombinant cells treated with Cry4Ba. Overall results indicated that Aa-mALP protein was responsible for mediating Cry4Ba toxicity against Sf9 cells, suggesting its role as a receptor for Cry4Ba toxin in A. aegypti mosquito larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号