首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Peng ZS  Yang J  Wei SH  Zeng JH 《Hereditas》2004,141(1):15-18
In a normal wheat (Triticum ssp.L.) spike, one floret carries only one pistil that will further develop into one grain after fertilization. The cultivated common wheat (T. aestivum L.) mutation line Three Pistils (TP) carried three pistils in a floret. Although one or two of the pistils died out before seed set in some florets, there were exist many florets that set three seeds. Normally, it was observed that there were one to three seeds in different florets of the same spike. Therefore, this mutation trait could raise considerably the number of grains per spike. The weight of 100 grains in three seeds set florets was lower than that of in one seed set florets. But three seeds set florets were significantly to surpass the one seed set florets in grain(s) weight per floret. Based on these results, the three pistils trait was suggested to be an interesting germplasm resource. Localisation of the gene controlling the three pistils trait was carried out by the method of crossing TP with the Chinese Spring disomic substitutions. F2 population segregation analysis revealed that only the 5B F2 population did not show homogeneity to control population. chi2-test analysis indicated that 5B F2 population, and only this population, was deviated from the Mendelian segregation ratio (3:1). As a conclusion, the gene for three pistils trait was located on chromosome 5B. According to the Recommended rules for gene symbolization in wheat, the name of the dominant gene for three pistils trait in the line TP was suggested as Pis1.  相似文献   

4.
5.
A common wheat (Triticum aestivum L.) mutation that produces 3 pistils (TP) per floret may result in formation of up to 3 kernels per floret. The TP trait may be important for increasing the number of grains per spike and for improving the yield potential through breeding. This trait is determined by the dominant Pis1 gene. Genetic mapping of Pis1 involved 234 microsatellite markers and bulk segregant analysis of a cross of the TP line with Novosibirskaya 67. The Pis1 gene is located on chromosome 2DL, between markers Xgwm539 and Xgwm349. This result does not agree with a previously published localization of the Pis1 gene on chromosome 5B. The possible importance of TP wheat as an alternative genetic resource is discussed.  相似文献   

6.
The process of heat regulation is complex and its exact molecular mechanism is not fully understood. In this study, to investigate the global gene regulation response to acute heat exposure, gene microarrays were exploited to analyze the effects of heat stress on three tissues (brain, liver, leg muscle) of the yellow broiler chicken (Gallus gallus). We detected 166 differentially expressed genes (DEGs) in the brain, 219 in the leg muscle and 317 in the liver. Six of these genes were differentially expressed in all three tissues and were validated by qRT-PCR, and included heat shock protein genes (HSPH1, HSP25), apoptosis-related genes (RB1CC1, BAG3), a cell proliferation and differentiation-related gene (ID1) and the hunger and energy metabolism related gene (PDK). All these genes might be important factors in chickens suffering from heat stress. We constructed gene co-expression networks using the DEGs of the brain, leg muscle and liver and two, four and two gene co-expression modules were identified in these tissues, respectively. Functional enrichment of these gene modules revealed that various functional clusters were related to the effects of heat stress, including those for cytoskeleton, extracellular space, ion binding and energy metabolism. We concluded that these genes and functional clusters might be important factors in chickens under acute heat stress. Further in-depth research on the newly discovered heat-related genes and functional clusters is required to fully understand their molecular functions in thermoregulation.  相似文献   

7.
阐明乙型肝炎病毒(HBV)前S1蛋白反式激活蛋白1(PS1TP1)的表达对于肝细胞的基因表达谱的影响。应用基因芯片技术对于pcDNA3.1()和pcDNA3.1()PS1TP1分别转染的HepG2细胞的基因表达谱进行分析。以肝癌细胞系HepG2基因作为模板,应用聚合酶链反应(PCR)技术扩增PS1TP1基因片段,以常规的分子生物学技术构建表达载体pcDNA3.1()PS1TP1。以脂质体技术转染肝母细胞瘤细胞系HepG2,提取总RNA,逆转录为cDNA,与转染空白表达载体pcDNA3.1()的HepG2细胞进行DNA芯片分析并比较。在4096个基因表达谱的筛选中,发现有8个基因表达水平显著上调,14个基因表达水平显著下调。PS1TP1基因的表达对于肝细胞基因表达谱有显著影响。DNA芯片技术是分析反式调节靶基因的有效技术途径。  相似文献   

8.
Maize is a well-known host for Meloidogyne incognita, and there is substantial variation in host status among maize genotypes. In previous work it was observed that nematode reproduction increased in the moderately susceptible maize inbred line B73 when the ZmLOX3 gene from oxylipid metabolism was knocked out. Additionally, in this mutant line, use of a nonspecific primer for phenyl alanine ammonialyase (PAL) genes indicated that expression of these genes was reduced in the mutant maize plants whereas expression of several other defense related genes was increased. In this study, we used more specific gene primers to examine the expression of six PAL genes in three maize genotypes that were good, moderate, and poor hosts for M. incognita, respectively. Of the six PAL genes interrogated, two (ZmPAL3 and ZmPAL6) were not expressed in either M. incognita–infected or noninfected roots. Three genes (ZmPAL1, ZmPAL2, and ZmPAL5) were strongly expressed in all three maize lines, in both nematode-infected and noninfected roots, between 2 and 16 d after inoculation (DAI). In contrast, ZmPAL4 was most strongly expressed in the most-resistant maize line W438, was not detected in the most-susceptible maize line CML, and was detected only at 8 DAI in the maize line B73 that supported intermediate levels of reproduction by M. incognita. These observations are consistent with at least one PAL gene playing a role in modulating host status of maize toward M. incognita and suggest a need for additional research to further elucidate this association.  相似文献   

9.
10.
11.
TP53 mutation is the most widespread mutation in lung adenocarcinoma (LUAD). Meanwhile, p53 (encoded by TP53) has recently been implicated in immune responses. However, it is still unknown whether TP53 mutation remodels the tumour microenvironment to influence tumour progression and prognosis in LUAD. In this study, we developed a 6‐gene immune‐related risk model (IRM) to predict the survival of patients with LUAD in The Cancer Genome Atlas (TCGA) cohort based on TP53 status, and the predictive ability was confirmed in 2 independent cohorts. TP53 mutation led to a decreased immune response in LUAD. Further analysis revealed that patients in the high‐index group had observably lower relative infiltration of memory B cells and regulatory T cells and significantly higher relative infiltration of neutrophils and resting memory CD4+ T cells. Additionally, the IRM index positively correlated with the expression of critical immune checkpoint genes, including PDCD1 (encoding PD‐1) and CD274 (encoding PD‐L1), which was validated in the Nanjing cohort. Furthermore, as an independent prognostic factor, the IRM index was used to establish a nomogram for clinical application. In conclusion, this IRM may serve as a powerful prognostic tool to further optimize LUAD immunotherapy.  相似文献   

12.
Feruloyl esterases can liberate ferulic acid (FA) from plant cell wall polymers. They are expressed by plant pathogenic fungi and could play a role in pathogenicity, although this question has not been addressed yet. The fungus Fusarium graminearum is the principal causal agent of fusarium head blight (FHB) and gibberella ear rot (GER), major diseases of wheat, barley, and maize in all temperate regions of the world. The F. graminearum genome contains seven genes with strong homology to feruloyl esterase (FAE) sequences. Phylogenetic analysis showed that these included three type B, three type C, and one type D FAE genes. Expression profiling of the seven FAE genes showed complex regulation patterns unique to each gene. In F. graminearum-infected plant tissues, the FAE genes exhibited host-specific gene expression. On wheat, FAEB1 and FAED1 were strongly expressed while FAEB2, FAEB3, and FAEC1 were expressed at more modest levels. On maize, only FAEB3, FAEC1, and FAED1 were expressed and at low levels. When growing F. graminearum in liquid culture, only FAEB1 and FAEC1 were expressed. Both genes were induced by a small group of related aromatic compounds including FA, caffeic acid, and p-coumaric acid. FAEB1 was induced by xylose, while repressed by glucose and galactose. FAEC1 was constitutively expressed at low levels in the presence of those sugars. Expression of the other five FAE genes was not detected in the culture conditions used. To determine if FAE genes were important for pathogenicity of F. graminearum, mutant strains inactivated for faeB1?, faeD1? or both genes were constructed and tested on wheat plants. No statistically significant change in pathogenicity and no compensatory expression of the other FAE genes were observed in the fae gene mutants. Our results show that FAEB1 and FAED1 are not required for pathogenicity of F. graminearum on wheat.  相似文献   

13.
14.
The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.  相似文献   

15.
《遗传学报》2020,47(5):263-272
Male sterile genes and mutants are valuable resources in hybrid seed production for monoclinous crops.High genetic redundancy due to allohexaploidy makes it difficult to obtain the nuclear recessive male sterile mutants through spontaneous mutation or chemical or physical mutagenesis methods in wheat.The emerging effective genome editing tool,CRISPR/Cas9 system,makes it possible to achieve simultaneous mutagenesis in multiple homoeoalleles.To improve the genome modification efficiency of the CRISPR/Cas9 system in wheat,we compared four different RNA polymerase(Pol) Ⅲ promoters(TaU3 p,TaU6 p,OsU3 p,and OsU6 p) and three types of sgRNA scaffold in the protoplast system.We show that the TaU3 promoter-driven optimized sgRNA scaffold was most effective.The optimized CRISPR/Cas9 system was used to edit three TaNP1 homoeoalleles,whose orthologs,OsNP1 in rice and ZmIPE1 in maize,encode a putative glucose-methanol-choline oxidoreductase and are required for male sterility.Triple homozygous mutations in TaNP1 genes result in complete male sterility.We further demonstrated that anyone wild-type copy of the three TaNP1 genes is sufficient for maintenance of male fertility.Taken together,this study provides an optimized CRISPR/Cas9 vector for wheat genome editing and a complete male sterile mutant for development of a commercially viable hybrid wheat seed production system.  相似文献   

16.
17.
18.
To understand the molecular mechanism of the three pistils mutation in wheat, two forward subtractive cDNA libraries from two pairs of near-isogenic wheat lines, Chuanmai 28 three pistils (CMTP) and Chinese Spring three pistils (CSTP), were constructed using SSH. A total of 68 clones in CMTP lines and 197 clones in CSTP lines were identified as potentially over-expressed clones. Thirty-two out of 68 clones in CMTP lines belonged to unknown proteins; while, the remaining 30 clones shared homology to diverse classes of genes involved in protein modulation and protein synthesis, signal transduction, and ion transporters. Approximately 67% of genes in CSTP lines were either unclassified or had no matches (“no hits”) in the database and about 33% of identified genes encoded polypeptides with known functions. Sequence comparisons of cDNA clones between the two forward cDNA libraries revealed that four genes, encoding thioredoxin H, ubiquitin protein ligases, MCM2, and ubiquinol-cytochrome C reductase complex 14 kDa proteins, were over-expressed in both libraries. These genes would likely play an important role in determining the three pistils trait in the mutant wheat line.  相似文献   

19.
The earliness per se gene Eps-A m 1 from diploid wheat Triticum monococcum affects heading time, spike development, and spikelet number. In this study, the Eps1 orthologous regions from rice, Aegilops tauschii, and Brachypodium distachyon were compared as part of current efforts to clone this gene. A single Brachypodium BAC clone spanned the Eps-A m 1 region, but a gap was detected in the A. tauschii physical map. Sequencing of the Brachypodium and A. tauschii BAC clones revealed three genes shared by the three species, which showed higher identity between wheat and Brachypodium than between them and rice. However, most of the structural changes were detected in the wheat lineage. These included an inversion encompassing the wg241-VatpC region and the presence of six unique genes. In contrast, only one unique gene (and one pseudogene) was found in Brachypodium and none in rice. Three genes were present in both Brachypodium and wheat but were absent in rice. Two of these genes, Mot1 and FtsH4, were completely linked to the earliness per se phenotype in the T. monococcum high-density genetic map and are candidates for Eps-A m 1. Both genes were expressed in apices and developing spikes, as expected for Eps-A m 1 candidates. The predicted MOT1 protein showed amino acid differences between the parental T. monococcum lines, but its effect is difficult to predict. Future steps to clone the Eps-A m 1 gene include the generation of mot1 and ftsh4 mutants and the completion of the T. monococcum physical map to test for the presence of additional candidate genes.  相似文献   

20.
The tumor suppressor TP53 gene is one of the most frequently mutated in different types of human cancer. Particularly in colorectal cancer (CRC), it is believed that TP53 mutations play a role in the adenoma–carcinoma transition of tumors during pathological process. In order to analyze TP53 expressed alleles in CRC, we examined TP53 mRNA in tumor samples from 101 patients with sporadic CRC. Samples were divided in two groups defined according to whether they exhibit positive or negative P53 protein expression as detected by immunohistochemistry (IHC). The presence of TP53 mutation was a common event in tumors with an overall frequency of 54.5%. By direct sequencing, we report 42 different TP53 sequence changes in 55 CRC patients, being two of them validated polymorphisms. TP53 mutations were more frequent in positive than in negative P53 detection group (p < 0.0001), being the precise figures 79.6% and 30.8%, respectively. In addition, the mutation profiles were also different between the two groups of samples; while most of the mutations detected in P53 positive group were missense (38 out of 39), changes in P53 negative detection group include 7 insertions/deletions, 6 missense, 2 nonsense and 1 silent mutation. As previously observed, most mutations were concentrated in regions encoding P53 DNA binding domain (DBD). Codons 175, 248 and 273 together account for 36.7% of point mutations, in agreement with previous observations provided that these codons are considered mutation hotspots. Interestingly, we detected two new deletions and two new insertions. In addition, in three samples we detected two deletions and one insertion that could be explained as putative splicing variants or splicing errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号