首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The platelet-derived growth factor (PDGF) family comprises disulfide-bonded dimeric isoforms and plays a key role in the proliferation and migration of mesenchymal cells. Traditionally, it consists of homo- and heterodimers of A and B polypeptide chains that occur as long (AL and BL) or short (AS and BS) isoforms. Short isoforms lack the basic C-terminal extension that mediates binding to heparin. In the present study, we show that certain PDGF isoforms bind in a specific manner to glycosaminoglycans (GAGs). Experiments performed with wild-type and mutant Chinese hamster ovary cells deficient in the synthesis of GAGs revealed that PDGF long isoforms bind to heparan sulfate and chondroitin sulfate, while PDGF short isoforms only bind to heparan sulfate. This was confirmed by digestion of cell surface GAGs with heparitinase and chondroitinase ABC and by incubation with sodium chloride to prevent GAG sulfation. Furthermore, exogenous GAGs inhibited the binding of long isoforms to the cell membrane more efficiently than that of short isoforms. Additionally, we performed surface plasmon resonance experiments to study the inhibition of PDGF isoforms binding to low molecular weight heparin by GAGs. These experiments showed that PDGF-AAL and PDGF-BBS isoforms bound to GAGs with the highest affinity. In conclusion, PDGF activity at the cell surface may depend on the expression of various cellular GAG species.  相似文献   

3.
Epidermal growth factor receptor variant III (EGFRvIII), the most common EGFR mutation, is associated with cell migration of glioblastoma multiforme (GBM) cases; however, the mechanism has not been elucidated. In this study, we found that the EGFRvIII-promoted glioma cell migration was closely linked to high levels of tyrosine phosphorylation in focal adhesion kinase (FAK) Y397. We also demonstrated that EGFRvIII formed a complex with FAK, resulting in enhanced tyrosine phosphorylation levels of FAK Y397 and EGFR Y1068. After knockdown of FAK expression via anti-FAK shRNA, the U87ΔEGFR cell migration was significantly inhibited, accompanying with the reduced phosphorylation levels of extracellular signal-regulated kinase (ERK1/2). Furthermore, the role of ERK1/2 in FAK-regulated cell migration was confirmed. Taken together, our results suggest that FAK and its downstream molecule ERK were involved in EGFRvIII-promoted glioma cell migration in U87ΔEGFR cells.  相似文献   

4.
FGFs 19, 21, and 23 are hormones that regulate in a Klotho co-receptor-dependent fashion major metabolic processes such as glucose and lipid metabolism (FGF21) and phosphate and vitamin D homeostasis (FGF23). The role of heparan sulfate glycosaminoglycan in the formation of the cell surface signaling complex of endocrine FGFs has remained unclear. Here we show that heparan sulfate is not a component of the signal transduction unit of FGF19 and FGF23. In support of our model, we convert a paracrine FGF into an endocrine ligand by diminishing heparan sulfate-binding affinity of the paracrine FGF and substituting its C-terminal tail for that of an endocrine FGF containing the Klotho co-receptor-binding site to home the ligand into the target tissue. In addition to serving as a proof of concept, the ligand conversion provides a novel strategy for engineering endocrine FGF-like molecules for the treatment of metabolic disorders, including global epidemics such as type 2 diabetes and obesity.  相似文献   

5.
Zinc is an effector of insulin/IGF-1 signaling and has insulinomimetic effects, the molecular basis of which is not understood. The present study establishes the capacity of zinc to inhibit protein tyrosine phosphatases (PTPs) as a cause for these effects and, moreover, demonstrates modulation of the insulin response by changes in intracellular zinc. The inhibition of PTPs by zinc occurs at significantly lower concentrations than previously reported. In vitro, zinc inhibits PTPs 1B and SHP-1 with IC(50) values of 17 and 93 nM, respectively. A fluorescent probe with a similar binding constant [FluoZin-3, K(D)(Zn) = 15 nM] detects corresponding concentrations of zinc within cells. Increase of cellular zinc after incubation with both zinc and the ionophore pyrithione augments protein tyrosine phosphorylation, and in particular the phosphorylation of three activating tyrosine residues of the insulin/IGF-1 receptor. Vice versa, specific chelation of cellular zinc with the membrane-permeable N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine suppresses insulin- and IGF-1-stimulated phosphorylation. In the context of the emerging concept that intracellular zinc is tightly regulated and fluctuates dynamically, these results suggest that a pool of cellular zinc modulates phosphorylation signaling.  相似文献   

6.
Neoglycolipid technology is eminently adaptable for microarray design for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Dermatan sulfate (DS) is known to play an important role because of its ability to bind growth factors as well as chemokines and to modulate their biological activities during inflammation and response to injury. We prepared various iduronic acid-rich fragments from DS by complete digestion with chondroitinase ACI, and investigated whether the DS-binding proteins, such as HGF/SF, RANTES, KGF/FGF-7 and HCII, can detect their oligosaccharide ligands in a neoglycolipid microarray. First, a comparison of the intensity of binding signals obtained from chondroitin oligosaccharides with those of heparin oligosaccharides showed that our microarray system is feasible not only to single-out the oligosaccharide ligands, but also to detect the difference between an intrinsic interaction unrelated only to electrostatic interaction and non-specific electrostatic interaction. Second, HGF/SF, KGF/FGF-7 and HCII showed preferential binding to iduronic acid-rich fragments of DS oligosaccharides that are greater than 8-mers in lengths. In contrast, RANTES binding seemed to depend only on the negative charges; their binding intensity towards the DS oligosaccharides was somewhat stronger than the binding of HGF/SF, KGF/FGF-7 and HCII. Third, the use of polyvinylpyrrolidone-40 (PVP-40), ovalbumin (OV) and Tween 20 in place of BSA as a blotting agent was useful in these glycosaminoglycan dependent reactions to minimize background due to non-specific interactions.  相似文献   

7.
Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-A resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary complex SOS binds to FGF and FGFR and thereby increases FGF-FGFR affinity. SOS also interacts with the adjoining FGFR and thereby promotes protein-protein interactions that stabilize dimerization. This structural finding is supported by the inability of selectively desulfated SOS molecules to promote receptor dimerization. Thus, we propose that SOS potentiates FGF signaling by imitating the dual role of heparin in increasing FGF-FGFR affinity and promoting receptor dimerization. Hence, the dimeric FGF-FGFR-SOS structure substantiates the recently proposed "two-end" model, by which heparin induces FGF-FGFR dimerization. Moreover, the FGF-FGFR-SOS structure provides an attractive template for the development of easily synthesized SOS-related heparin agonists and antagonists that may hold therapeutic potential.  相似文献   

8.
The glucosaminoglycans isolated from the skin of control and streptozotocin-diabetic rats were fractionated on ion-exchange chromatography into a heparan sulfate (HS)-like and a heparin-like species. In addition, a low sulfated fraction was isolated from the diabetics. The HS and heparin-like fractions isolated from the diabetics (in contrast to the low sulfated fractions) retained high affinity for the acidic (FGF-1) and basic (FGF-2) fibroblast growth factors. In culture, the fractions purified from the control rats and the heparin-like material isolated from the diabetics mediated the biological activity of both FGFs in a dose-dependent manner. By contrast, the diabetic HS-like fractions promoted the biological activity of FGF-2 but not of FGF-1. The results support the idea that the structural motives in HS required for FGF-1 and FGF-2 mediated receptor signalling are different. They may be relevant to the impaired wound healing observed in the disease. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
Human basic fibroblast growth factor (bFGF) is a heparin-binding growth factor containing a G-S-G-motif which is a potential recognition sequence of xylosyltransferase I (XT-I). Here, we show that the recombinant human bFGF was xylosylated in vitro by human XT-I and that the fragment bFGF (1-24) is a good XT-I acceptor (K(m) = 20.8 microM for native XT-I and K(m) = 22.3 microM for recombinant XT-I). MALDI and MALDI-PSD time-of-flight mass spectrometric analyses of the xylosylated bFGF protein demonstrate the transfer of xylose to the serine residue of the G-S-G-motif in the amino terminal end of bFGF. The peptide bFGF (1-24) is well suitable as an acceptor substrate for XT-I and can be used in a radiochemical assay to measure the XT-I activity in cell culture supernatant and human body fluids, respectively. Furthermore, we could demonstrate that the XT-I interacts strongly with heparin and that this glycosaminoglycan is a predominantly non-competitive inhibitor of the enzyme using the fragment bFGF (1-24) as xylose acceptor.  相似文献   

10.
A partnership between the ectodomain of the fibroblast growth factor receptor (FGFR) isotypes and the chains of pericellular matrix heparan sulfate determines the fibroblast growth factor (FGF) and cell-type specificitives of the FGFR signaling complex. The contribution of the FGFR intracellular tyrosine kinase domains to the specificity of FGFR signaling is unclear. This report shows that the quantity and quality of phosphorylation of the FGFR kinase substrate SNT1 (also called FGFR substrate 2, FRS2) is both FGFR isotype and cell-type specific in prostate tumor epithelial cells at different stages of malignancy. Epithelial cell-resident FGFR2 that promotes homeostasis yields a low level of phosphorylated 65-kDa SNT1. Phosphorylation by ectopic FGFR1 that promotes malignancy was much more intense and yielded a phosphorylated 85-kDa SNT1. The amount of the 85-kDa SNT1 increased by 20-fold during proliferative aging of FGFR1-expressing cell populations that is required for FGFR1-stimulated mitogenesis and the malignant phenotype. In addition, the receptor-specific differential phosphorylation of SNT1 by FGFR isotypes, both of which are normally anchored to the cell membrane, occurred only in intact cells. Therefore, similar to kinase subunits within the heparan sulfate-FGFR complex, cell membrane and cytoskeletal context likely determine FGFR isotype- and cell-type-specific conformational relationships between FGFR kinases and external substrates. This determines the quantity and quality of SNT1 phosphorylation and differential signaling.  相似文献   

11.
Caveolin is a major structural component of caveolae and has been implicated in the regulation of the function of several caveolae-associated signaling molecules. Platelet-derived growth factor (PDGF) receptors and caveolin were colocalized in the same subcellular fraction after sucrose density gradient fractionation of fibroblasts. Additionally, we found that the PDGF receptors interacted with caveolin in NIH3T3 fibroblast cells. We then examined whether caveolin directly binds to PDGF receptors and inhibits kinase activity using a recombinant PDGF receptor overexpressed in insect cells and peptides derived from the scaffolding domain of caveolin subtypes. We found the peptide from caveolin-1 and -3, but not -2, inhibited the autophosphorylation of PDGF receptors in a dose-dependent manner. Similarly, caveolin-1 and -3 peptides directly bound to PDGF receptors. Mutational analysis using a series of truncated caveolin-3 peptides (20-, 17-, 14-, and 11-mer peptides) revealed that at least 17 amino acid residues of the peptide were required to inhibit and directly bind to PDGF receptors. Thus, our findings suggest that PDGF receptors directly interact with caveolin subtypes, leading to the inhibition of kinase activity. Caveolin may be another regulating factor of PDGF-mediated tyrosine kinase signaling.  相似文献   

12.
13.
The cytoplasmic tail of the beta-amyloid precursor protein (APP) contains a Y(682)ENPTY(687) sequence through which APP associates with phosphotyrosine binding (PTB) domain containing proteins in a tyrosine phosphorylation-independent manner. We have recently found that tyrosine phosphorylation of APP-Y(682) promotes docking of Shc proteins that modulate growth factor signaling to the ERK and PI3K/Akt pathways. We have also shown that APP is phosphorylated on Y(682) in cells that overexpress a constitutively active form of the tyrosine kinase abl. Here we present evidence that the nerve growth factor receptor TrkA may also promote phosphorylation of APP. Overexpression of TrkA, but not of mutated, kinase inactive TrkA resulted in tyrosine phosphorylation of APP. Site-directed mutagenesis studies showed that TrkA overexpression was associated with phosphorylation of APP-Y(682). Moreover, overexpression of TrkA also affected APP processing reducing the generation of the APP intracellular domain (AID). Thus, tyrosine phosphorylation of APP may functionally link APP processing and neurotrophic signaling to intracellular pathways associated with cellular differentiation and survival.  相似文献   

14.
Fibroblast growth factors (FGF) are secreted molecules which function through the activation of specific tyrosine kinases receptors, the FGF receptors that transduce the signal by activating different pathways including the Ras/MAP kinase and the phospholipase-C gamma pathways. FGFs are involved in the regulation of many developmental processes including patterning, morphogenesis, differentiation, cell proliferation or migration. Such a diverse set of activities requires a tight control of the transduction signal which is achieved through the induction of different feedback inhibitors such as the Sproutys, Sef and MAP kinase phosphatase 3 which are responsible for the attenuation of FGF signals, limiting FGF activities in time and space.  相似文献   

15.
The role of heparin and heparan sulfate in the binding and signaling of fibroblast growth factors (FGFs) has been subject to intense investigation, but the studies have largely been confined to two species (FGF1 and FGF2) of the family with approximately 20 members. We have investigated the structural requirements for heparin/heparan sulfate in binding and activation of FGF8 (splice variant b). We present evidence that the minimal FGF8b-binding saccharide domain encompasses 5-7 monosaccharide units. The N-, 2-O-, and 6-O-sulfate substituents of heparin/heparan sulfate (HS) are all involved in the interaction, preferentially in the form of trisulfated IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3)) disaccharide constituents. These structural characteristics resemble those described earlier for FGF1. By contrast, the saccharide structures required for the biological activity of FGF8b differed significantly from those characteristic for FGF1 and FGF2. Experiments with cells lacking active HS indicated that extended >/=14-mer heparin domains were needed to enhance cell proliferation and Erk phosphorylation by FGF8b, whereas in cells stimulated with FGF1 or FGF2 the corresponding responses were achieved by much shorter, 6-8-mer, oligosaccharides. Furthermore, still longer domains were needed to activate FGF8b in cells with "non-optimal" FGF receptor expression. Collectively, our data suggest that the heparin/HS structures enhancing the biological activity of FGFs were influenced by the FGF species involved as well as by the cellular composition of FGF receptors.  相似文献   

16.
The non-receptor tyrosine kinase Src is recruited to activated fibroblast growth factor receptor (FGFR) complexes through the adaptor protein factor receptor substrate 2 (FRS2). Here, we show that Src kinase activity has a crucial role in the regulation of FGFR1 signalling dynamics. Following receptor activation by ligand binding, activated Src is colocalized with activated FGFR1 at the plasma membrane. This localization requires both active Src and FGFR1 kinases, which are inter-dependent. Internalization of activated FGFR1 is associated with release from complexes containing activated Src. Src-mediated transport and subsequent activation of FGFR1 require both RhoB endosomes and an intact actin cytoskeleton. Chemical and genetic inhibition studies showed strikingly different requirements for Src family kinases in FGFR1-mediated signalling; activation of the phosphoinositide-3 kinase-Akt pathway is severely attenuated, whereas activation of the extracellular signal-regulated kinase pathway is delayed in its initial phase and fails to attenuate.  相似文献   

17.
The phosphorylation of tyrosine hydroxylase, purified from rat striatum, was investigated using purified Ca2+/calmodulin (CaM)-dependent protein kinase II. This kinase catalyzed the Ca2+-dependent incorporation of up to 0.8 mol 32PO4/mol tyrosine hydroxylase subunit (62 kilodaltons). Reverse-phase high-performance liquid chromatography mapping of tryptic 32P-peptides established that the Ca2+/CaM-dependent protein kinase II phosphorylated a different serine residue than was phosphorylated by the cyclic AMP-dependent protein kinase. Limited proteolysis sequentially reduced the subunit Mr from 62 to 59 kilodaltons and finally to 57 kilodaltons, resulting in loss of the site phosphorylated by the Ca2+/CaM-dependent protein kinase II, but not the site phosphorylated by the cyclic AMP-dependent protein kinase. Phosphorylation by the Ca2+/CaM-dependent protein kinase II had little direct effect on the kinetic properties of tyrosine hydroxylase, but did convert it to a form that could be activated twofold by addition of an activator protein. This heat-labile activator protein increased the Vmax without affecting the Km for the pterin cofactor. This effect was specific in that the activator protein was without effect on nonphosphorylated tyrosine hydroxylase or on tyrosine hydroxylase phosphorylated by the cyclic AMP-dependent protein kinase. These results are consistent with the hypothesis that the "Vmax-type" activation of tyrosine hydroxylase observed upon depolarization of neural and adrenal tissues may be mediated by the Ca2+/CaM-dependent protein kinase II.  相似文献   

18.
The mitogenic activity of acidic fibroblast growth factor (aFGF) is potentiated by the highly sulfated hexasaccharide [IdoUA,2S-GlcNS,6S]2-[GlcUA-GlcNS,6S] the structural repetitive unit of lung heparin chains. On a mass basis, the effect of both heparin and oligosaccharide are equivalent whereas on a molar basis, heparin, which contains about seven hexasaccharide repeats, is more efficient. On the other hand, a pentasulfated tetrasaccharide or di- and trisulfated disaccharides are much less effective in potentiating aFGF activity than the hexasaccharide. If the growth factor is pre-incubated with the hexasaccharide at pH 7.2 and then exposed to pH 3.5 the 306/345 nm fluoresence ratio is similar to that of native aFGF indicating that the oligosaccharide stabilizes a native conformation of the protein. Heparan sulfates extracted from various mammalian tissues were also able to potentiate aFGF mitogenic activity. On a mass basis they were in general less efficient than heparin; however, heparan sulfate prepared from medium conditioned by 3T3 fibroblasts is more efficient than heparin both on a mass and molar basis. A highly sulfated oligosaccharide isolated after digestion of pancreas heparan sulfate with heparitinase I is more active than the intact molecule, reaching a potentiating effect equivalent to that of lung heparin, whereas an N-acetylated oligosaccharide isolated after nitrous acid degradation is inactive. These data suggest that the mitogenic activity of aFGF is primarily potentiated by interacting with highly sulfated regions of heparan sulfates chains.Abbreviations aFGF,bFGF acidic and basic fibroblast growth factor - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum - U,2S-(14)-GlcNS,6S O--L-ido(ene-pyranosyluronic acid 2-O-sulfate)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - U-(14)-GlcNS,6S O-(ene-pyranosyluronic acid)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - IdoUA iduronic acid - GlcUA glucuronic acid - GlyUA uronic acid; GlcNAcN-acetylglycosamine - GlcNS N-sulfated glucosamine - GlcNS,6S N,6-disulfated glucosamine - Gal galactose - Xyl xylose - Ser serine - HS heparan Sulfate  相似文献   

19.
Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside–TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and integrins.  相似文献   

20.
Cell type and tissue distribution of the fibroblast growth factor receptor   总被引:8,自引:0,他引:8  
A receptor for fibroblast growth factor (aFGF, bFGF) was partially characterized in intact cell cultures, cell plasma membranes, and tissue plasma membrane preparations. Analysis of 24 different cell types from four species identified a 165-kDa FGF receptor present on the cell surface of most mesodermal and neuroectodermal cells. Chemical crosslinking of 125I-aFGF to its cell surface receptor was specifically blocked by a 100-fold molar excess of either aFGF or bFGF. In contrast to the similar molecular weight of FGF receptors, different cell types exhibited significant variations in binding of 125I-aFGF to intact cultures with low values of 8 pM and 700, to high values of 60 pM and 30,000, for the Kd and receptor number per cell, respectively. A binding assay was developed for quantitation of 125I-aFGF binding to cell- and tissue-derived membrane preparations. Membranes prepared from baby hamster kidney cells exhibited a Kd of 55 pM, while a similar Kd of 67 pM was determined for intact baby hamster kidney cells. Although ten different adult bovine tissue membrane preparations and human term placental membranes exhibited no specific binding of 125I-aFGF, FGF receptor was detected in embryonic murine tissues (17 days gestation). These results support the existence, in a variety of cells, of either a common FGF receptor that binds both aFGF and bFGF or closely related FGF receptors that cannot be distinguished by molecular weight. The differential binding of FGF to its receptor in embryonic vs. adult tissues suggests a potentially broad role for FGF in embryonic development and a more restrictive role in the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号