首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallothioneins (MTs) are cysteine-rich proteins required for heavy metal tolerance in animals and fungi. Recent results indicate that plants also possess functional metallothionein genes. Here we report the cloning and characterization of five metallothionein genes fromArabidopsis thaliana. The position of the single intron in each gene is conserved. The proteins encoded by these genes can be divided into two groups (MT1 and MT2) based on the presence or absence of a central domain separating two cysteine-rich domains. Four of the MT genes (MT1a,MT1c,MT2a andMT2b) are transcribed inArabidopsis. Several lines of evidence suggest that the fifth gene,MT1b, is inactive. There is differential regulation of the MT gene family. MT1 mRNA is expressed highly in roots, moderately in leaves and is barely detected in inflorescences and siliques. MT2a and MT2b mRNAs are more abundant in leaves, inflorescences and in roots from mature plants, but are also detected in roots of young plants, and in siliques. MT2a mRNA is strongly induced in seedlings by CUSO4, whereas MT2b mRNA is relatively abundant in this tissue and levels increase only slightly upon exposure to copper.MT1a andMT1c are located within 2 kb of each other and have been mapped to chromosome 1.MT1b andMT2b map to separate loci on chromosome V, andMT2a is located on chromosome III. The locations of these MT genes are different from that ofCAD1, a gene involved in cadmium tolerance inArabidopsis.  相似文献   

2.
Rapid alkalinization factor (RALF) is a peptide signal that plays a role in plant cell expansion. We have recently proposed that AtRALF1 negatively regulates root cell elongation and lateral root formation by opposing the effects of brassinosteroid (BR). We reported 6 AtRALF1-inducible cell wall-related genes and 2 P450 monooxygenase -encoding genes involved in the BR biosynthetic pathway. The AtRALF1-inducible genes implicated in cell wall remodeling were not downregulated by brassinolide (BL) treatment alone; their induction was only compromised following simultaneous treatment with AtRALF1 and BL. We further examined the cell wall-remodeling gene EXPANSIN A5 (AtEXPA5), which is upregulated by BL and has been shown to positively affect root cell elongation. Herein, we report that AtEXPA5 expression is downregulated by AtRALF1 in a dose-dependent manner in the roots and hypocotyls of Arabidopsis plants. AtEXPA5 is also downregulated in plants that overexpress AtRALF1, and it is upregulated in plants in which the AtRALF1 gene is partially silenced. The AtRALF1 peptide is also able to repress AtEXPA5 induction following a pre-treatment with BL. A schematic diagram showing the gene regulatory network connecting the recently reported genes with the regulation of cell expansion by AtEXPA5 is presented.  相似文献   

3.
4.
5.
Summary Glutamine synthetase (GS) plays an important role in the assimilation of nitrogen by higher plants. We present here a molecular analysis of the GS polypeptides, mRNAs, and genes of Arabidopsis thaliana. Western blot analysis of leaf and root protein extracts revealed at least two distinct GS polypeptides; 43 kDa and 39 kDa GS polypeptides were present in leaves, while only a 39 kDa GS was detected in roots. The 43 kDa GS polypeptide is light-inducible. In etiolated seedlings only the 39 kDa GS was detected. However, upon greening the 43 kDa GS increased to levels comparable to those observed in light-grown plants. Four distinct GS cDNA clones, Atgsl1, Atgsrl, Atgsr2 and Atk6 were isolated and characterized. Their complete nucleotide and deduced amino acid sequences are presented. The coding sequences of the four clones are 70–88% similar while their 5 and 3 untranslated regions exhibit less than 50% similarity. Northern blots of leaf, root and germinated seed RNA revealed that the four cDNAs hybridize to mRNAs which are differentially expressed in the organs of Arabidopsis thaliana. Atgsl1 is leaf-specific and hybridizes to a 1.6 kb mRNA. Both Atgsr1 and Atgskb6 hybridize to 1.4 kb mRNAs which are expressed in both roots and germinated seeds. Atgsr2 hybridizes to a 1.4 kb mRNA, which is primarily expressed in roots with low levels of expression in seeds and leaves. Atgsl1, which represents the leaf-specific mRNA, is induced by light. Atgsl1 mRNA levels increase during the greening of etiolated seedlings while Atgsr1 levels remain constant. Southern blot analysis indicated that the Arabidopsis genome contains at least four and possibly five distinct GS genes.  相似文献   

6.
7.
The yeast Skp1 protein is a component of the SCF complex, an E3 enzyme involved in the specific protein degradation pathway via ubiquitination. Skp1 binds to F-box proteins to trigger specific recognition of proteins targeted for degradation. SKP1-like genes have been found in a variety of eukaryotes including yeast, man, Caenorhabditis elegans and Arabidopsis thaliana. The Arabidopsis genome contains 20 SKP1-like genes called ASK (for Arabidopsis SKP1-like), among which only ASK1 has been characterized in detail. The analysis of the expression pattern of the ASK genes in Arabidopsis should provide key information for the understanding of the biological role of this family in protein degradation and in different cellular mechanisms. In this paper, we describe the expression profiles of 19 ASK promoter-GUS fusions in stable transformants of Arabidopsis, with a special emphasis on floral organ development. Four ASK promoters did not show any detectable expression in either inflorescences or seedlings. Our results on the ASK1 expression profile are consistent with previous reports. Several ASK promoters show clear tissue-specific expression (for instance in the connective of anthers or in the embryo). We also found that almost half (9/19) of ASK promoters direct a post-meiotic expression in the male gametophyte. Tight regulation of the expression of this gene family indicates a crucial role of the ubiquitin degradation pathway during development, particularly during male gametophyte development.  相似文献   

8.
9.
We have isolated three independent clones for nuclear elongator tRNAMet genes from an Arabidopsis DNA library using a tRNAMet-specific probe generated by PCR. Each of the coding sequences for tRNAMet in these clones is identical and is interrupted by an identical 11 bp long intervening sequence at the same position in the anticodon loop of the tRNA. Their sequences differ at two positions from the intron in a soybean counterpart. Southern analysis of Arabidopsis DNA demonstrates that a gene family coding for tRNAMet is dispersed at at least eight loci in the genome. The unspliced precursor tRNAMet intermediate was detected by RNA analysis using an oligonucleotide probe complementary to the putative intron sequence. In order to know whether introns commonly interrupt plant tRNAMet genes, their coding sequences were PCR-amplified from the DNAs of eight phylogenetically separate plant species. All 53 sequences determined contain 10 to 13 bp long intervening sequences, always positioned one base downstream from the anticodon. They can all be potentially folded into the secondary structure characteristic for plant intron-containing precursor tRNAs. Surprisingly, GC residues are always present at the 5-distal end of each intron.  相似文献   

10.
11.
Summary Genes homologous to the mammalian mitochondrial NADH dehydrogenase subunit genes ND4L and ND5 were identified in the mitochondrial genome of the filamentous fungus Neurospora crassa, and the structure and expression of these genes was examined. The ND4L gene (interrupted by one intervening sequence) potentially encodes an 89 residue long hydrophobic protein that shares about 26% homology (or 41% homology if conservative amino acid substitutions are allowed) with the analogous human mitochondrial protein. The ND5 gene (which contains two introns) encodes a 715 residue polypeptide that shares 23% homology with the human analogue; a 300 amino acid long region is highly conserved (50% homology) in the two ND5 proteins. The stop codon of the ND4L gene overlaps the initiation codon of the downstream ND5 gene, and the two genes are contranscribed and probably cotranslated. A presumed mature dicistronic (ND4L plus ND5) RNA was detected. The postulated mRNA (about 3.2 kb) contains 5 and 3 non-coding regions of about 86 and 730 nucleotides, respectively; this species is generated from very large precursor RNAs by a complex processing pathway. The ND4L and ND5 introns are all stable after their excision from the precursor species.Abbreviations bp base pairs - rRNA ribosomal RNA - ND NADH dehydrogenase - URF unidentified reading frame - kDal kilodaltons; a.a., amino acid  相似文献   

12.
13.
The genes that are expressed in most or all types of neurons define generic neuronal features and provide a window into the developmental origin and function of the nervous system. Few such genes (sometimes referred to as pan-neuronal or broadly expressed neuronal genes) have been defined to date and the mechanisms controlling their regulation are not well understood. As a first step in investigating their regulation, we used a computational approach to detect sequences overrepresented in their promoter elements. We identified a ten-nucleotide cis-regulatory motif shared by many broadly expressed neuronal genes and demonstrated that it is involved in control of neuronal expression. Our results further suggest that global and cell-type-specific controls likely act in concert to establish pan-neuronal gene expression. Using the newly discovered motif and genome-level gene expression data, we identified a set of 234 candidate broadly expressed genes. The known involvement of many of these genes in neurogenesis and physiology of the nervous system supports the utility of this set for future targeted analyses.  相似文献   

14.
15.
16.
Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.  相似文献   

17.
We have isolated and determined DNA sequence for the 5-flanking regions of three Arabidopsis thaliana polyubiquitin genes, UBQ3, UBQ10, and UBQ11. Comparison to cDNA sequences revealed the presence of an intron in the 5-untranslated region at the same position immediately upstream of the initiator methionine codon in each of the three genes. An intron at this position is also present in two sunflower and two maize polyubiquitin genes. An intron is also found in the 5-untranslated regions of several animal polyubiquitin genes, although the exact intron position is not conserved among them, and none are in the same position as those in the higher plant polyubiquitin genes. Chimeric genes containing the 5-flanking regions of UBQ3, UBQ10, and UBQ11 in front of the coding regions for the reporter enzyme Escherichia coli -glucuronidase (GUS) were constructed. When introduced transiently into Arabidopsis leaves via microprojectile bombardment, all resulted in readily detectable levels of GUS activity that were quantitatively similar. The introns of UBQ3 and UBQ10 in the corresponding promoter fragments were removed by replacement with flanking cDNA sequences and chimeric genes constructed. These constructs resulted in 2.5- to 3-fold lower levels of marker enzyme activity after transient introduction into Arabidopsis leaves. The UBQ10 promoter without the 5 intron placed upstream of firefly luciferase (LUX) resulted in an average of 3-fold lower LUX activity than from an equivalent construct with the UBQ10 intron. A UBQ3 promoter cassette was constructed for the constitutive expression of open reading frames in dicot plants and it produced readily detectable levels of GUS activity in transient assays.  相似文献   

18.
19.
20.
Stability and evolution of overlapping genes   总被引:11,自引:0,他引:11  
Abstract.— When the same sequence of nucleotides codes for regions of more than one functional polypeptide, this sequence contains overlapping genes. Overlap is most common in rapidly evolving genomes with high mutation rates such as viruses, bacteria, and mitochondria. Overlap is thought to be important as: (1) a means of compressing a maximum amount of information into short sequences of structural genes; and (2) as a mechanism for regulating gene expression through translational coupling of functionally related polypeptides. The stability of overlapping codes is examined in relation to the information cost of overlap and the mutation rate of the genome. The degree of overlap in a given population will tend to become monomorphic. Evolution toward partial overlap of genes is shown to depend on a convex cost function of overlap. Overlap does not evolve when expression of overlapping genes is mutually exclusive and produced by rare mutations to the wild-type genome. Assuming overlap increases coupling between functionally related genes, the conditions favoring overlap are explored in relation to the kinetics of gene activation and decay. Coupling is most effective for genes in which the gene overlapping at its 5'end (leading gene) decays rapidly, while the gene overlapping at the 3'end (induced gene) decays slowly. If gene expression can feedback on itself (autocatalysis), then high rates of activation favor overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号