首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thymic T cell function in streptozotocin-treated (STZ) diabetic mice has been examined. STZ administration suppresses thymic T cell proliferation in response to mitogen stimulation in vitro. Secretion of IL-4 was dramatically reduced; however, secretion of IL-2 or IFN-gamma was not significantly inhibited. RT-PCR analysis of thymocyte RNA revealed that levels of IL-4 mRNA were dramatically decreased in STZ-treated mice. Levels of mRNA encoding IFN-gamma were similar, but the appearance was delayed in thymocytes derived from STZ-treated mice, implying differential regulation of IL-4 and IFN-gamma. Defective thymocyte proliferation was partially restored by exposure to IL-2 in vitro; however, IL-4 completely reversed the STZ-induced defect. Administration in vivo of IL-4 before STZ treatment reversed the STZ-induced thymocyte proliferation defect and prevented both pancreatic islet destruction and hyperglycemia. Thymocyte cell surface differentiation markers were not appreciably different from control mice. Collectively these experiments suggest that STZ treatment of mice reduces expression of IL-4 which is associated with development of autoimmune diabetes.  相似文献   

2.
Both Th1 and Th17 cells are important components of the immune response to Helicobacter pylori (Hp) in adults, but less is known about T cell responses to Hp during early childhood, when the infection is often acquired. We investigated Th1 and Th17 type responses to Hp in adults, children and infants in Bangladesh, where Hp is highly endemic. IL-17 and IFN-γ mRNA levels in gastric biopsies from Hp-infected Bangladeshi adults were analyzed and compared to levels in infected and uninfected Swedish controls. Since biopsies could not be collected from infants and children, cytokine responses in Bangladeshi infants (6–12 months), children (3–5 years) and adults (>19 years) were instead compared by stimulating peripheral blood mononuclear cells (PBMCs) with a Hp membrane preparation (MP) and analyzing culture supernatants by ELISA and cytometric bead array. We found significantly higher expression of IL-17 and IFN-γ mRNA in gastric mucosa of Hp-infected Bangladeshi and Swedish adults compared to uninfected Swedish controls. PBMCs from all age groups produced IL-17 and IFN-γ after MP stimulation, but little Th2 cytokines. IL-17 and IFN-γ were primarily produced by CD4+ T cells, since CD4+ T cell depleted PBMCs produced reduced amounts of these cytokines. Infant cells produced significantly more IL-17, but similar levels of IFN-γ, compared to adult cells after MP stimulation. In contrast, polyclonal stimulation induced lower levels IL-17 and IFN-γ in infant compared to adult PBMCs and CD4+ T cells. The strong IL-17 production in infants after MP stimulation was paralleled by significantly higher production of the IL-17 promoting cytokine IL-1β from infant compared to adult PBMCs and monocytes. In conclusion, these results show that T cells can produce high levels of IL-17 and IFN-γ in response to Hp from an early age and indicate a potential role for IL-1β in promoting Th17 responses to Hp during infancy.  相似文献   

3.
Interleukin (IL)-17A, a proinflammatory cytokine produced by T-helper (Th)17 cells, has been associated with autoimmune diseases. Type 1 diabetes (T1D) is caused either due to mutation of insulin gene or developed as an autoimmune disease. Studies have shown that IL-17A expression is upregulated in the pancreas in T1D patients and animal models. However, role or importance of IL-17A in T1D pathogenesis needs elucidation. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells through activating IL-17 receptor A (IL-17RA) is lacking. Ins2Akita (Akita) mouse, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis, was crossed with IL-17A-knockout mouse and male IL-17A-deficient Akita mice were used. Streptozotocin, a pancreatic β-cell-specific cytotoxin, was employed to induce a diabetic model in MIN6 cells, a mouse insulinoma cell line. IL-17A expression in the pancreas was upregulated in both Akita and streptozotocin-induced diabetic mice. IL-17A-knockout Akita mice manifested reduced blood glucose concentration and raised serum insulin level. IL-17A deficiency also decreased production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, IL-1β, and interferon (IFN)-γ in Akita mice. IL-17RA expression in MIN6 cells was upregulated by IL-17A. IL-17A enhanced expression of TNF-α, IL-1β, IFN-γ, and inducible nitric oxide synthase (iNOS) and further increased streptozotocin-induced expression of the inflammatory factors in MIN6 cells. IL-17A exacerbated streptozotocin-induced MIN6 cell apoptosis and insulin secretion impairment. Blocking IL-17RA with anti-IL-17RA-neutralizing antibody reduced all these deleterious effects of IL-17A on MIN6 cells. Collectively, IL-17A deficiency alleviated hyperglycemia, hypoinsulinemia, and inflammatory response in Akita mice that are characteristic for T1D. IL-17A exerted an alone and synergistic destruction with streptozotocin to pancreatic β cells through IL-17RA pathway. Thus, the data suggest that targeting IL-17A and/or IL-17RA is likely to preserve remaining β-cell function and treat T1D.Impact statementThe participation of interleukin (IL)-17A in diabetic pathogenesis is suggested in animal models of autoimmune diabetes and in patients with type 1 diabetes (T1D), but with some contradictory results. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells is lacking. We showed that IL-17A deficiency alleviated diabetic signs including hyperglycemia, hypoinsulinemia, and inflammatory response in Ins2Akita (Akita) mice, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis. IL-17A enhanced inflammatory reaction, oxidative stress, and cell apoptosis but attenuated insulin level in mouse insulin-producing MIN6 cells. IL-17A had also a synergistic destruction to MIN6 cells with streptozotocin (STZ), a pancreatic β-cell-specific cytotoxin. Blocking IL-17 receptor A (IL-17RA) reduced all these deleterious effects of IL-17A on MIN6 cells. The results demonstrate the role and the importance of IL-17A in T1D pathogenesis and suggest a potential therapeutic strategy for T1D targeting IL-17A and/or IL-17RA.  相似文献   

4.
5.
Diabetic nephropathy (DN) is the leading cause of renal failure worldwide and its complications have become a public health problem. Inflammation, oxidative stress and fibrosis play central roles in the progression of DN that lead to renal failure. Potential deleterious effect of inflammation in early evolution of DN is not fully disclosed. Therefore, it is relevant to explore therapies that might modulate this process in order to reduce DN progression. We explored the beneficial effect of all-trans retinoic acid (ATRA) in early inflammation in glomeruli, proximal and distal tubules in streptozotocin (STZ)-induced diabetes. ATRA was administered (1 mg/kg daily by gavage) on days 3 to 21 after STZ administration. It was found that 21 days after STZ injection, diabetic rats exhibited proteinuria, increased natriuresis and loss of body weight. Besides, diabetes induced an increase in interleukins [IL-1β, IL-1α, IL-16, IL-13, IL-2; tumor necrosis factor alpha (TNF-α)] and transforming growth factor-beta 1 (TGF-β1), chemokines (CCL2, CCL20, CXCL5 and CXCL7), adhesion molecules (ICAM-1 and L-selectin) and growth factors (GM-CSF, VEGF, PDGF) in glomeruli and proximal tubules, whereas ATRA treatment remarkably ameliorated these alterations. To further explore the mechanisms through which ATRA decreased inflammatory response, the NF-κB/p65 signaling mediated by TLR4 was studied. We found that ATRA administration attenuates the TLR4/NF-κB inflammatory signaling and prevents NF-κB nuclear translocation in glomeruli and proximal tubules.  相似文献   

6.
7.
Type 1-diabetes is an autoimmune disease, where a chronic inflammatory process finally causes β-cell death and insulin deficiency. Extracts from gum resin of Boswellia serrata (BE) have been shown to posses anti-inflammatory properties especially by targeting factors/mediators related to autoimmune diseases. Multiple low dose-streptozotocin (MLD-STZ) treatment is a method to induce diabetes in animals similar to Type 1 diabetes in humans.It was aimed to study whether or not a BE could prevent hyperglycemia, inflammation of pancreatic islets and increase of proinflammatory cytokines in the blood in MLD-STZ treated mice.In BK+/+ wild type mice, 5 days of daily treatment with 40 mg/kg STZ i.p. produced permanent increase of blood glucose, infiltration of lymphocytes into pancreatic islets (CD3-stain), apoptosis of periinsular cells (staining for activated caspase 3) after 10 days as well as shrinking of islet tissue after 35 days (H&E staining). This was associated with an increase of granulocyte colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor (GM-CSF) and proinflammatory cytokines (IL-1A, IL-1B, IL-2, IL-6, IFN-γ, TNF-α) in the blood. Whereas BE alone did not affect blood glucose in non diabetic mice, in STZ treated mice simultaneous i.p. injection of 150 mg/kg of BE over 10 days prevented animals from increase of blood glucose levels. Histochemical studies showed, that i.p. injection of 150 mg/kg BE for 10 days starting with STZ treatment, avoided lymphocyte infiltration into islets, apoptosis of periinsular cells and shrinking of islet size 35 days after STZ. As far as the cytokines tested are concerned, there was a significant inhibition of the increase of G-CSF and GM-CSF. BE also significantly prevented the increase of IL-1A, IL-1B, IL-2, IL-6, IFN-γ and TNF-α. It is concluded that extracts from the gum resin of Boswellia serrata prevent islet destruction and consequent hyperglycemia in an animal model of type 1 diabetes probably by inhibition of the production/action of cytokines related to induction of islet inflammation in an autoimmune process.  相似文献   

8.
Melatonin, a pleiotropic hormone, has many regulatory effects on the circadian and seasonal rhythms, sleep and body immune system. It is used in the treatment of blind circadian rhythm sleep disorders, delayed sleep phase and insomnia. It is a potent antioxidant, anti-inflammatory, free radical scavenger, helpful in fighting infectious disease and cancer treatment. Decreased level of circulating melatonin was associated with an increased blood glucose level, losing the anti-oxidant protection and anti-inflammatory responses. We aimed to evaluate the effect of melatonin administration, in streptozotocin (STZ) induced diabetic rats, on blood glucose level and pancreatic beta (β) cells. Diabetes mellitus was induced in Sprague dawley male rats by the intravenous (i.v) injection of 65 mg/kg of STZ. Diabetic rats received melatonin at a dose of 10 mg/kg daily for 8 weeks by oral routes. The results showed, after 8 weeks of melatonin administration, a reduction in: 1- fasting blood glucose (FBG) and fructosamine (FTA) levels, 2- kidney and liver function parameters, 3- levels of serum triglycerides, cholesterol and LDL-C, 4- malondialdehyde (MDA), 5- NF-κB expression in treated group, 6- pro-inflammatory cytokines (IL-1β and IL-12) and immunoglobulins (IgA, IgE and IgG). Furthermore, an elevation in insulin secretion was noticed in melatonin treated group that indicated β cells regeneration. Therefore, melatonin administration, in STZ induced diabetic rats; reduced hyperglycemia, hyperlipidemia and oxidative stress. Melatonin acted as an anti-inflammatory agent that reduced pro-inflammatory cytokines (IL-1β and IL-12) and oxidative stress biomarkers (MDA). Melatonin succeeded in protecting β cells under severe inflammatory situations, which was apparent by the regeneration of islets of Langerhans in treated diabetic rats. Moreover, these results can open a gate for diabetes management and treatment.  相似文献   

9.
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.  相似文献   

10.
Type 1 diabetes (T1D) is a chronic autoimmune disease caused by proinflammatory autoreactive T cells that mediate the selective destruction of insulin-producing β cells via both direct and indirect mechanisms. Many immune cells and proinflammatory cytokines are involved in the pathogenesis of autoimmune diabetes. Immune intervention is effective for the prevention and treatment of T1D by blocking the autoimmune assault to β cells. The non-structural protein 1(NS1) of influenza A viruses is a non-essential virulence factor encoded on segment 8 that has multiple accessory functions, including suppression of innate immunity and adaptive immunity, inhibition of apoptosis and activation of phosphoinositide 3-kinase (PI3K). This research investigated whether the expression of NS1 can prevent and treat diabetes mellitus induced by Streptozotocin (STZ). The NS1 expressing plasmid pEGFP-C2/NS1 was constructed and injected intramuscularly to both thighs of mice. Its effect on mice was observed. Intramuscular delivery of pEGFP-C2/NS1 resulted in reduction in hyperglycemia and diabetes incidence, with an increase in insulin. pEGFP-C2/NS1 could also increase glycogen and regulated serum cytokine levels. In addition, by comparison to the mice treated with empty vector pEGFP-C2, ameliorative insulitis was observed in the mice treated with recombinant plasmid pEGFP-C2/NS1. This result suggests that the expression of NS1 is effective for the prevention and treatment of diabetes mellitus induced by STZ in a mouse model.  相似文献   

11.
Protection by thymosin fraction 5 (TF5) from subdiabetogenic-dose streptozotocin (STZ)-induced type I diabetes in CD-1 mice was investigated. Mice which received multiple subdiabetogenic-dose (35 mg/kg) injections of STZ became hyperglycemia within two weeks. Hyperglycemia was also induced in those treated with low dose of TF5 (0.01 mg/day) in addition to STZ, though it was somewhat mild. In contrast, animals given STZ plus high dose of TF5 (0.1 mg/day) remained normoglycemic throughout the whole observation period (within 4 weeks). In the pancreatic islets from these animals, histologically, the well-granulated beta cells were observed and the infiltration of lymphoid cells was absent or mild. These results suggest that the administration of TF5 prevents the induction of insulitis and hyperglycemia in the subdiabetogenic-dose STZ-treated mice.  相似文献   

12.
IL-23 and IL-12 are structurally similar and critical for the generation of efficient cellular immune responses. Toxoplasma gondii induces a strong cell-mediated immune response. However, little is known about IL-23 secretion profiles in T. gondii-infected immune cells in connection with IL-12. We compared the patterns of IL-23 and IL-12 production by THP-1 human monocytic cells in response to stimulation with live or heat-killed T. gondii tachyzoites, or with equivalent quantities of either T. gondii excretory/secretory proteins (ESP) or soluble tachyzoite antigen (STAg). IL-23 and IL-12 were significantly increased from 6 hr after stimulation with T. gondii antigens, and their secretions were increased with parasite dose-dependent manner. IL-23 concentrations were significantly higher than those of IL-12 at the same multiplicity of infection. IL-23 secretion induced by live parasites was significantly higher than that by heat-killed parasites, ESP, or STAg, whereas IL-12 secretion by live parasite was similar to those of ESP or STAg. However, the lowest levels of both cytokines were at stimulation with heat-killed parasites. These data indicate that IL-23 secretion patterns by stimulation with various kinds of T. gondii antigens at THP-1 monocytic cells are similar to those of IL-12, even though the levels of IL-23 induction were significantly higher than those of IL-12. The detailed kinetics induced by each T. gondii antigen were different from each other.  相似文献   

13.
Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 by HMDM. The involvement of nuclear factor (NF)-κB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-κB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-κB activation and TNF-α production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-κB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-α. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, and NO. In particular, we showed that T. vaginalis induced TNF-α production in macrophages through NO-dependent activation of NF-κB, which might be closely involved in inflammation caused by T. vaginalis.  相似文献   

14.
The effect of neurotropin (NSP) in combination with streptozotocin (STZ) and cyclophosphamide (CY) on blood glucose and pancreatic histopathology on day 7 and day 14 after the initiation of the treatment was studied in C57Bl/6 male mice. STZ (40 mg/kg) and NSP (1 mg/kg) were applied intraperitoneally on five consecutive days and CY (150 mg/kg)--twice on day 1 and day 3. In single B cells dilatation of the endoplasmic reticulum was found. On day 7 in proximity to some endocrine cells in the mice treated with STZ, STZ + CY + NSP and STZ + CY macrophages were observed. On day 14 lymphocytic infiltration of the islets was demonstrated only in the groups of mice injected with STZ, STZ + CY while in the group treated with the combination STZ + CY + NSP no infiltration was seen. All experimental groups showed no biochemical evidence for hyperglycemia probably due to the mild destruction of a small number of B cells. The results indicate that NSP might possess a restorative action on insulitis induced by multiple low dose streptozotocin administration in mice.  相似文献   

15.
The present studies were undertaken to examine the effects of probucol on the protection against pancreatic beta-cell damage by multiple low-dose streptozotocin (STZ: 40 mg/kg, ip). The degree of hyperglycemia at 7, 14 and 17 days after STZ injection was attenuated by probucol. Serum immunoreactive insulin (IRI) levels were increased in the rats fed probucol containing diet at Day 14 and 17. Serum IRI levels after intraperitoneal injection of 2.0 g/kg glucose was reduced in STZ mice and the reduction of serum IRI levels was attenuated in the rats fed probucol, accompanied with a significant reduction of the degree of hyperglycemia after bolus of glucose. Probucol attenuated the reduction of pancreatic IRI content by STZ. The percentage of Thy 1.2-positive splenocytes was increased by STZ and probucol reduced the percentage of Thy 1.2-positive splenocytes, although there were no differences in the populations of splenocytes, positive with Lyt 2 or L3/T4. These data suggest that probucol has a protective action against pancreatic insulitis by multiple low-dose STZ administration.  相似文献   

16.
Abstract

A variety of immunomodulatory effects have previously been attributed to haptoglobin (Hp). These are supposed to be partly mediated through binding of Hp to CD11b. In the present study, we assessed its effects on T-helper (Th) cytokine production following both in vitro and in vivo stimulation of T-cells. Hp exhibits a dose-dependent inhibitory effect on human T lymphocyte release of the Th2 cytokines (IL-4, IL-5, IL-10 and IL-13) in vitro, whereas it has no clear effect on Th1 cytokine (IL-2 and IFN-γ) release. When administered an anti-CD3 monoclonal antibody, Hp knockout mice produced more IL-4 and less IFN-γ than did their wild-type litter-mates. Our findings imply that Hp may be regarded as a regulator of the Th1/Th2 balance in both human and murine immune systems.  相似文献   

17.
ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.  相似文献   

18.
The present study was undertaken to determine the interaction of rosiglitazone, a PPAR-γ agonist with methanolic extract of Momordica charantia L (MC), an herbal drug used widely as an antidiabetic agent. The pharmacodynamic interaction was evaluated in oral glucose tolerance test, streptozotocin (STZ) induced diabetes in adult rats and STZ induced diabetes in neonatal rats. Rosiglitazone was given orally at two different doses of 2 mg/kg and 5 mg/kg and MC was administered at a dose of 500 mg/kg, p.o. The serum glucose level estimation and histopathological studies of pancreas, liver and kidney were carried out. Both rosiglitazone and MC showed hypoglycaemic effect in oral glucose tolerance test. The hypoglycaemic effect observed with combination of rosiglitazone and MC was significantly more compared to either of the drugs given alone. MC also augmented the hypoglycaemic effect of rosiglitazone in both STZ induced diabetes in adult animals and STZ induced diabetes in neonatal rats. Histopathological studies revealed that administration of rosiglitazone with MC increased the volume of islet cell in pancreas and prevented the hepatic damage when compared to control. It was concluded that MC augments hypoglycaemic effect of rosiglitazone. This could be important in reducing the dose of rosiglitazone to achieve enhanced therapeutic effect with minimal adverse effects.  相似文献   

19.
A variety of immunomodulatory effects have previously been attributed to haptoglobin (Hp). These are supposed to be partly mediated through binding of Hp to CD11b. In the present study, we assessed its effects on T-helper (Th) cytokine production following both in vitro and in vivo stimulation of T-cells. Hp exhibits a dose-dependent inhibitory effect on human T lymphocyte release of the Th2 cytokines (IL-4, IL-5, IL-10 and IL-13) in vitro, whereas it has no clear effect on Th1 cytokine (IL-2 and IFN-gamma) release. When administered an anti-CD3 monoclonal antibody, Hp knockout mice produced more IL-4 and less IFN-gamma than did their wild-type litter-mates. Our findings imply that Hp may be regarded as a regulator of the Th1/Th2 balance in both human and murine immune systems.  相似文献   

20.
The adolescent skeleton undergoes accelerated growth determining overall bone density, length, and quality. Diseases such as type 1 diabetes (T1D), most often diagnosed in adolescents, can alter bone processes and promote bone loss. Studies examining type 1 diabetic (T1D) bone pathologies typically utilize adult mice and rely on pharmacologic models such as streptozotocin (STZ)‐induced diabetic rodents. To test the effect of T1D on adolescent bone growth/density we used a novel juvenile genetic model (Ins2+/? mice) that spontaneously develop T1D at approximately 5 weeks of age and compared our findings with STZ‐induced T1D mice. Compared to controls, both Ins2+/? and STZ‐induced T1D mice displayed blood glucose levels greater than 300 mg/dl and reduced body, fat and muscle mass as well as femur trabecular bone density. STZ mice exhibited greater bone loss compared to Ins2+/? mice despite having lower blood glucose levels. Cortical bone was affected in STZ but not Ins2+/? mice. Osteocalcin serum protein and bone RNA levels decreased in both models. Consistent with studies in adult mice, STZ adolescent mice displayed increased marrow adiposity, however this was not observed in the Ins2+/? mice. Reduced femur length, decreased growth plate thickness and decreased collagen II expression in both model simplies impaired cartilage formation. In summary, both pharmacologic and spontaneous adolescent T1D mice demonstrated a bone synthesis and growth defect. STZ appears to cause a more severe phenotype. Thus, the Ins2+/? mouse could serve as a useful model to study adolescent T1D bone loss with fewer complications. J. Cell. Physiol. 228: 689–695, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号