首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preprotein translocation in Escherichia coli is mediated by translocase, a multimeric membrane protein complex with SecA as the peripheral ATPase and SecYEG as the translocation pore. Unique cysteines were introduced into transmembrane segment (TMS) 2 of SecY and TMS 3 of SecE to probe possible sites of interaction between the integral membrane subunits. The SecY and SecE single-Cys mutants were cloned individually and in pairs into a secYEG expression vector and functionally overexpressed. Oxidation of the single-Cys pairs revealed periodic contacts between SecY and SecE that are confined to a specific alpha-helical face of TMS 2 and 3, respectively. A Cys at the opposite alpha-helical face of TMS 3 of SecE was found to interact with a neighboring SecE molecule. Formation of this SecE dimer did not affect the high-affinity binding of SecA to SecYEG and ATP hydrolysis, but blocked preprotein translocation and thus uncouples the SecA ATPase activity from translocation. Conditions that prevent membrane deinsertion of SecA markedly stimulated the interhelical contact between the SecE molecules. The latter demonstrates a SecA-mediated modulation of the protein translocation channel that is sensed by SecE.  相似文献   

2.
The preprotein translocase of Escherichia coli is a multisubunit enzyme with two domains, the peripheral membrane protein SecA and the membrane-embedded SecY/E protein. SecY/E has been isolated as a complex of three polypeptides, SecY, SecE, and band 1. We now present four lines of evidence that the active species of SecY/E is composed of a tightly associated complex of these three subunits: 1) antibodies to SecY efficiently precipitate SecY/E activity as well as all three polypeptides; 2) the proportions of SecY, SecE, and band 1 in the immunoprecipitates are the same as in the starting fraction; 3) the immunoprecipitable complex is not disrupted by treatment with either high salt or urea but is disrupted by brief incubation at 20 degrees C, and the kinetics of dissociation of both band 1 and SecE from SecY at 20 degrees C parallel the loss of translocation ATPase activity; 4) upon immunoprecipitation of similar units of activity of translocase from detergent solutions from either wild-type membranes or a SecY and SecE overproducer strain, the SecE and band 1 subunits are recovered in the same proportions. These data establish that the subunits of SecY/E are firmly associated and that it is the associated complex which is active for translocation.  相似文献   

3.
Satoh Y  Mori H  Ito K 《Biochemistry》2003,42(24):7442-7447
Although the importance of interactions involving both the cytosolic and transmembrane regions of SecY and SecE has been documented, no information has been available for the physical contact sites of these translocase subunits in their cytosolic domains. We now carried out site-specific cross-linking experiments to identify SecY and SecE regions that are physically close. Cysteines introduced into SecY residue 244 in the fourth cytosolic domain (C4) as well as into residues 354-356 and 362 in the C5 domain could be cross-linked with natural or engineered residues at positions 79 and 81 in the central part of the cytosolic loop of SecE. These cross-linkages were abolished by the Gly240 mutation in the SecY C4 region as well as by prlG alterations in SecE transmembrane segment 3, known to compromise SecY-SecE interaction. We suggest that the cytosolic and intramembrane interactions bring these two subunits together, forming a functionally crucial SecYE interface involving the SecY C5 region and the conserved cytosolic segment of SecE.  相似文献   

4.
Genes encoding the C- and N-terminal regions of SecE were constructed and placed under the control of the tac promoter on plasmids. The C-terminal region of SecE (SecE-C) was sufficient for suppression of the secEcs phenotype, confirming the results of Schatz et al. (Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., and Beckwith, J. (1991) EMBO J. 10, 1749-1757). SecE-C allowed the overproduction of SecY, and its overproduction was achieved when the tac-secY gene, on a plasmid, was induced, indicating that the C-terminal region is the site of interaction of SecE with SecY and that the interaction makes the two Sec proteins stable. SecE-C was purified and used with SecY for the reconstitution of protein translocation activity. SecE-C was active in the functional reconstitution. The SecE-C/SecY-dependent protein translocation absolutely required SecA and ATP as the native translocation reaction did. Quantitative analysis revealed that SecE-C was 50% as active as intact SecE. The N-terminal region of SecE (SecE-N) also suppressed in vivo the defect caused by the secEcs mutation. SecE-N was, however, inactive in the overproduction of SecY. A possible oligomeric structure of SecE is discussed.  相似文献   

5.
SecY, SecE and SecG form a heterotrimer, which functions as a protein translocation channel in Escherichia coli. The cytosolic loop of SecE contains a segment that is conserved among different organisms. Here we show that mutational alterations in this segment not only inactivate the SecE function but confer dominant interfering properties on the altered SecE molecule. Such effects were especially evident in mutant cells in which the requirement for SecE function was increased. Overproduction of SecE, but not of SecY, alleviated the dominant negative effects. These results suggest that the inactive SecE molecule sequesters wild-type SecE. It was also found that an amino acid substitution, D112P, in the C-terminal periplasmic region intragenically suppressed the dominant interference. These results are consistent with a notion that there is significant SecE-SecE interaction in vivo, in which the C-terminal region has an important role. The data hence suggest that dimeric SecE participates in the formation of the functional translocation channel.  相似文献   

6.
In Escherichia coli, the SecYEG complex mediates the translocation and membrane integration of proteins. Both genetic and biochemical data indicate interactions of several transmembrane segments (TMSs) of SecY with SecE. By means of cysteine scanning mutagenesis, we have identified intermolecular sites of contact between TMS7 of SecY and TMS3 of SecE. The cross-linking of SecY to SecE demonstrates that these subunits are present in a one-to-one stoichiometry within the SecYEG complex. Sites in TMS3 of SecE involved in SecE dimerization are confined to a specific alpha-helical interface and occur in an oligomeric SecYEG complex. Although cross-linking reversibly inactivates translocation, the contact between TMS7 of SecY and TMS3 of SecE remains unaltered upon insertion of the preprotein into the translocation channel. These data support a model for an oligomeric translocation channel in which pairs of SecYEG complexes contact each other via SecE.  相似文献   

7.
Yahr TL  Wickner WT 《The EMBO journal》2000,19(16):4393-4401
SecA insertion and deinsertion through SecYEG drive preprotein translocation at the Escherichia coli inner membrane. We present three assessments of the theory that oligomers of SecYEG might form functional translocation sites. (i) Formaldehyde cross- linking of translocase reveals cross-links between SecY, SecE and SecG, but not higher order oligomers. (ii) Cross-linking of membranes containing unmodified SecE and hemagglutinin-tagged SecE (SecE(HA)) reveals cross-links between SecY and SecE and between SecY and SecE(HA). However, anti-HA immunoprecipitates contain neither untagged SecE nor SecY cross-linked to SecE. (iii) Membranes containing similar amounts of SecE and SecE(HA) were saturated with translocation intermediate (I(29)) and detergent solubilized. Anti-HA immunoprecipitation of I(29) required SecYE(HA)G and SecA, yet untagged SecE was not present in this translocation complex. Likewise, anti-HA immunoprecipitates of membranes containing equal amounts of SecY and SecY(HA) were found to contain SecY(HA) but not SecY. Both immunoprecipitates contain more moles of I(29) than of the untagged subunit, again suggesting that translocation intermediates are not engaged with multiple copies of SecYEG. These studies suggest that the active form of preprotein translocase is monomeric SecYEG.  相似文献   

8.
SecE was solubilized from SecE-overproducing E. coli cells and purified through ion exchange and size exclusion chromatographies. When the solubilized membrane containing overproduced amounts of SecY and SecE was fractionated by means of size exclusion chromatography, the two proteins were eluted in different fractions with slight overlapping. Proteoliposomes active in protein translocation were reconstituted from these fractions only when both SecE and SecY were present. When reconstitution was carried out with the purified SecE and fractions containing SecY but only a small amount of SecE, the resultant proteoliposomes exhibited appreciable translocation activity, indicating that SecE is essential for protein translocation. The translocation activity of proteoliposomes was proportional to the amount of purified SecE used for reconstitution. SecE-dependent protein translocation absolutely required ATP and SecA.  相似文献   

9.
SecY and SecE are integral cytoplasmic membrane proteins that form an essential part of the protein translocation machinery in Escherichia coli. Sites of direct contact between these two proteins have been suggested by the allele-specific synthetic phenotypes exhibited by pairwise combinations of prlA and prlG signal sequence suppressor mutations in these genes. We have introduced cysteine residues within the first periplasmic loop of SecY and the second periplasmic loop of SecE, at a specific pair of positions identified by this genetic interaction. The expression of the cysteine mutant pair results in a dominant lethal phenotype that requires the presence of DsbA, which catalyzes the formation of disulfide bonds. A reducible SecY-SecE complex is also observed, demonstrating that these amino acids must be sufficiently proximal to form a disulfide bond. The use of cysteine-scanning mutagenesis enabled a second contact site to be discovered. Together, these two points of contact allow the modeling of a limited region of quaternary structure, establishing the first characterized site of interaction between these two proteins. This study proves that actual points of protein-protein contact can be identified by using synthetic phenotypes.  相似文献   

10.
The SecY protein of Escherichia coli and its homologues in other organisms, are integral components of the cellular protein translocation machinery. Suppressor mutations that alter SecY (the prlA alleles) broaden the specificity of this machinery and allow secretion of precursor proteins with defective signal sequences. Twenty-five prlA alleles have been characterized. These suppressor mutations were found to cluster in regions corresponding to three distinct topological domains of SecY. Based on the nature and position of the prlA mutations, we propose that transmembrane domain 7 of SecY functions in signal sequence recognition. Results suggest that this interaction may involve a right-handed supercoil of alpha-helices. Suppressor mutations that alter this domain appear to prevent signal sequence recognition, and this novel mechanism of suppression suggests a proofreading function for SecY. We propose that suppressor mutations that alter a second domain of SecY, transmembrane helix 10, also affect this proof-reading function, but indirectly. Based on the synthetic phenotypes exhibited by double mutants, we propose that these mutations strengthen the interaction with another component of the translocation machinery, SecE. Suppressor mutations were also found to cluster in a region corresponding to an amino-terminal periplasmic domain. Possible explanations for this unexpected finding are discussed.  相似文献   

11.
Bacterial protein translocation is mediated by translocase, a multisubunit membrane protein complex that consists of a peripheral ATPase SecA and a preprotein-conducting channel with SecY, SecE, and SecG as subunits. Like Escherichia coli SecG, the Bacillus subtilis homologue, YvaL, dramatically stimulated the ATP-dependent translocation of precursor PhoB (prePhoB) by the B. subtilis SecA-SecYE complex. To systematically determine the functional exchangeability of translocase subunits, all of the relevant combinations of the E. coli and B. subtilis secY, secE, and secG genes were expressed in E. coli. Hybrid SecYEG complexes were overexpressed at high levels. Since SecY could not be overproduced without SecE, these data indicate a stable interaction between the heterologous SecY and SecE subunits. E. coli SecA, but not B. subtilis SecA, supported efficient ATP-dependent translocation of the E. coli precursor OmpA (proOmpA) into inner membrane vesicles containing the hybrid SecYEG complexes, if E. coli SecY and either E. coli SecE or E. coli SecG were present. Translocation of B. subtilis prePhoB, on the other hand, showed a strict dependence on the translocase subunit composition and occurred efficiently only with the homologous translocase. In contrast to E. coli SecA, B. subtilis SecA binds the SecYEG complexes only with low affinity. These results suggest that each translocase subunit contributes in an exclusive manner to the specificity and functionality of the complex.  相似文献   

12.
The bacterial translocase mediates the translocation and membrane integration of proteins. The integral membrane proteins SecY and SecE are conserved core subunits of the translocase. Previous cysteine-scanning studies showed that the transmembrane segment (TMS) 3 of SecE contacts TMS 2 and 7 of SecY, and TMS 3 of another SecE. We now demonstrate that SecE also contacts TMS 10 of SecY. Combining all available cysteine-scanning mutagenesis data, a three-dimensional model has been built in which the positions of the helices that form the central core of the bacterial translocase are mapped. Remarkably, this model reveals that TMS 3 of SecE is strongly tilted relative to SecY.  相似文献   

13.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

14.
The SecE protein is an essential component of the SecAYE-translocase, which mediates protein translocation across the cytoplasmic membrane in bacteria. In the thylakoid membranes of chloroplasts, a protein homologous to SecE, chloroplastic (cp) SecE, has been identified. However, the functional role of cpSecE has not been established experimentally. In this report we show that cpSecE in cells depleted for bacterial SecE (i) supports growth, (ii) stabilizes, just like bacterial SecE, the Sec-translocase core component SecY, and (iii) supports Sec-dependent protein translocation. This indicates that cpSecE can functionally replace bacterial SecE in vivo, and strongly suggests that the thylakoid membrane contains a SecAYE-like translocase with functional and structural similarities to the bacterial complex. This study further underscores the evolutionary link between chloroplasts and bacteria.  相似文献   

15.
Osborne AR  Rapoport TA 《Cell》2007,129(1):97-110
Many proteins are translocated across the bacterial plasma membrane by the interplay of the cytoplasmic ATPase SecA with a protein-conducting channel, formed from the evolutionarily conserved heterotrimeric SecY complex. Here, we have used purified E. coli components to address the mechanism of translocation. Disulfide bridge crosslinking demonstrates that SecA transfers both the signal sequence and the mature region of a secreted substrate into a single SecY molecule. However, protein translocation involves oligomers of the SecY complex, because a SecY molecule defective in translocation can be rescued by linking it covalently with a wild-type SecY copy. SecA interacts through one of its domains with a nontranslocating SecY copy and moves the polypeptide chain through a neighboring SecY copy. Oligomeric channels with only one active pore likely mediate protein translocation in all organisms.  相似文献   

16.
Genetic approaches can address the question of how integral membrane Sec factors interact with each other and facilitate protein translocation across the cytoplasmic membrane of E. coli. This review summarizes genetic analyses of SecY, SecE and some other protein translocation factors, utilizing 'prl' mutations, 'sec' mutations, 'suppressor-directed inactivation', 'Sec titration', dominant negative mutations and their suppressors. Evidence suggests that co-ordinate participation of SecY, SecE, SecD, SecF, and probably some other factors, is crucial for the process.  相似文献   

17.
The secretion of proteins from the cytoplasm of Escherichia coli requires the interaction of two integral inner membrane components, SecY and SecE. We have devised a genetic approach to probe the molecular nature of the SecY-SecE interaction. Suppressor alleles of secY and secE, termed prlA and prlG, respectively, were analyzed in pair-wise combinations for synthetic phenotypes. From a total of 115 combinations, we found only seven pairs of alleles that exhibit a synthetic defect when present in combination with one another. The phenotypes observed are not the result of additive defects caused by the prl alleles, nor are they the consequence of multiple suppressors functioning within the same strain. In all cases, the synthetic defect is recessive to wild-type secY or secE provided in trans. The recessive nature argues for a defective interaction between the Prl suppressors. The extreme allele specificity and topological coincidence of the mutations represented by these seven pairs of alleles identify domains of interaction between SecY/PrlA and SecE/PrlG.  相似文献   

18.
K Nishiyama  S Mizushima    H Tokuda 《The EMBO journal》1993,12(9):3409-3415
A novel factor, which is a membrane component of the protein translocation machinery of Escherichia coli, was discovered. This factor was found in the trichloracetic acid-soluble fraction of solubilized cytoplasmic membrane. The factor was purified to homogeneity by ion exchange column chromatographies and found to be a hydrophobic protein with a molecular mass of approximately 12 kDa. The factor caused > 20-fold stimulation of the protein translocation when it was reconstituted into proteoliposomes together with SecE and SecY. SecE, SecY, SecA and ATP were essential for the factor-dependent stimulation of the activity. The factor stimulated the translocation of all three precursor proteins examined, including authentic proOmpA. Stimulation of the translocation of proOmpF-Lpp, a model presecretory protein, was especially remarkable, since no translocation was observed unless proteoliposomes were reconstituted with the factor. Partial amino acid sequence of the purified factor was determined. An antibody raised against a synthetic peptide of this sequence inhibited the protein translocation into everted membrane vesicles, indicating that the factor is playing an important role in protein translocation into membrane vesicles. The partial amino acid sequence was found to coincide with that deduced from the reported DNA sequence of the upstream region of the leuU gene. Cloning and sequencing of the upstream region revealed the presence of a new open reading frame, which encodes a hydrophobic protein of 11.4 kDa. We propose that the factor is a general component of the protein translocation machinery of E. coli.  相似文献   

19.
T Taura  T Baba  Y Akiyama    K Ito 《Journal of bacteriology》1993,175(24):7771-7775
While SecY in wild-type Escherichia coli cells is stable and is complexed with other proteins within the membrane, moderately overexpressed and presumably uncomplexed SecY was degraded with a half-life of 2 min. The fact that the amount of stable SecY is strictly regulated by the degradation of excess SecY was demonstrated by competitive entry of the SecY+ protein and a SecY-LacZ alpha fusion protein into the stable pool. Simultaneous overexpression of SecE led to complete stabilization of excess SecY. Overproduced SecD and SecF did not affect the stability of SecY, but plasmids carrying ORF12 located within the secD-secF operon partially stabilized this protein. In contrast, mutational reduction of the SecE content (but not the ORF12 content) led to the appearance of two populations of newly synthesized SecY molecules, one that was immediately degraded and one that was completely stable. Thus, the E. coli cell is equipped with a system that eliminates SecY unless it is complexed with SecE, a limiting partner of SecY. Our observations implied that in wild-type cells, SecY and SecE rapidly associate with each other and remain complexed.  相似文献   

20.
Haider S  Hall BA  Sansom MS 《Biochemistry》2006,45(43):13018-13024
SecY is the central channel protein of the SecYEbeta translocon, the structure of which has been determined by X-ray diffraction. Extended (15 ns) MD simulations of the isolated SecY protein in a phospholipid bilayer have been performed to explore the relationship between protein flexibility and the mechanisms of channel gating. In particular, principal components analysis of the simulation trajectory has been used to probe the intrinsic flexibility of the isolated SecY protein in the absence of the gamma-subunit (SecE) clamp. Analysis and visualization of the principal eigenvectors support a "plug and clamshell" model of SecY channel gating. The simulation results also indicate that hydrophobic gating at the central pore ring prevents leakage of water and ions through the channel in the absence of a translocating peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号