首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Michaelis and Menten’s mechanism for enzymatic catalysis is remarkable both in its simplicity and its wide applicability. The extension for reversible processes, as done by Haldane, makes it even more relevant as most enzymes catalyze reactions that are reversible in nature and carry in vivo flux in both directions. Here, we decompose the reversible Michaelis–Menten equation into three terms, each with a clear physical meaning: catalytic capacity, substrate saturation and thermodynamic driving force. This decomposition facilitates a better understanding of enzyme kinetics and highlights the relationship between thermodynamics and kinetics, a relationship which is often neglected. We further demonstrate how our separable rate law can be understood from different points of view, shedding light on factors shaping enzyme catalysis.  相似文献   

2.
Nitroalkane oxidase (NAO) catalyzes neutral nitroalkanes to their corresponding aldehydes or ketones, hydrogen peroxide and nitrite. The crystal structure of NAO from Streptomyces ansochromogenes was determined; it consists of two domains, a TIM barrel domain bound to FMN and C-terminal domain with a novel folding pattern. Site-directed mutagenesis of His179, which is spatially adjacent to FMN, resulted in the loss of enzyme activity, demonstrating that this amino acid residue is important for catalysis. The crystal structure of mutant H179D-nitroethane was also analyzed. Interestingly, Sa-NAO shows the typical function as nitroalkane oxidase but its structure is similar to that of 2-nitropropane dioxygenase. Overall, these results suggest that Sa-NAO is a novel nitroalkane oxidase with TIM barrel structure.  相似文献   

3.
Steady-state and time-resolved fluorescence spectroscopy and fluorescence microscopy of leukocyte flavoproteins have been performed. Both living human peripheral blood monocytes and neutrophils have been utilized as experimental models, as the former relies much more heavily on mitochondrial metabolism for energy production than the latter. We confirm previous studies indicating that cellular flavoproteins absorb at 460 nm and emit at 530 nm, very similar to that of the FAD moiety. Furthermore, the emission properties of intracellular flavoproteins were altered by the metabolic inhibitors rotenone, antimycin A, azide, cyanide, DNP (2,4-dinitrophenol), and FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone]. Kinetic studies revealed flavoprotein emission oscillations in both monocytes and neutrophils. The flavoprotein intensity oscillations correlated with the physiological status of the cell and the nature of membrane receptor ligation. Microscopy revealed the presence of flavoprotein fluorescence in association with the plasma membrane, intracellular granules and distributed throughout the cytoplasm, presumably within mitochondria. Metabolic inhibitors such as cyanide suggest that the plasma membrane and granular components are cyanide-insensitive and therefore are likely associated with the flavoprotein component of the NADPH oxidase, which is located in these two compartments. This interpretation was found to be consistent with structural localization of the NADPH oxidase using an antibody molecule specific for this protein. Using peripheral blood neutrophils, which display less active mitochondria, and time-resolved emission spectroscopy, we show that the NADPH oxidase-associated flavoprotein undergoes a periodic transient reduction of about 54±2 ms in living cells. This finding is consistent with prior studies indicating that propagating substrate (NADPH) waves periodically promote electron transport across the NADPH oxidase.  相似文献   

4.
This article sketches the road from the establishment of the principles of enzyme kinetics, at the beginning of the 20th century, to the discovery of regulatory mechanisms and the models to explain them, from the middle of the century onwards. A long gap in time separates the two periods, in which technological advances were made that allowed the discovery of feedback inhibition and cooperativity. In particular, these discoveries and the theory needed to explain them could not have been made without knowledge of the major metabolic pathways and the enzymes and metabolites involved in them.  相似文献   

5.
Glucosinolates are plant secondary metabolites abundant in Brassica vegetables that are substrates for the enzyme myrosinase, a thioglucoside hydrolase. Enzyme-mediated hydrolysis of glucosinolates forms several organic products, including isothiocyanates (ITCs) that have been explored for their beneficial effects in humans. Myrosinase has been shown to be tolerant of non-natural glucosinolates, such as 2,2-diphenylethyl glucosinolate, and can facilitate their conversion to non-natural ITCs, some of which are leads for drug development. An HPLC-based method capable of analyzing this transformation for non-natural systems has been described. This current study describes (1) the Michaelis–Menten characterization of 2,2-diphenyethyl glucosinolate and (2) a parallel evaluation of this analogue and the natural analogue glucotropaeolin to evaluate effects of pH and temperature on rates of hydrolysis and product(s) formed. Methods described in this study provide the ability to simultaneously and independently analyze the kinetics of multiple reaction components. An unintended outcome of this work was the development of a modified Lambert W(x) which includes a parameter to account for the thermal denaturation of enzyme. The results of this study demonstrate that the action of Sinapis alba myrosinase on natural and non-natural glucosinolates is consistent under the explored range of experimental conditions and in relation to previous accounts.  相似文献   

6.
Pus10 is the most recently identified pseudouridine synthase found in archaea and higher eukaryotes. It modifies uridine 55 in the TΨC arm of tRNAs. Here, we report the first quantitative biochemical analysis of tRNA binding and pseudouridine formation by Pyrococcus furiosus Pus10. The affinity of Pus10 for both substrate and product tRNA is high (Kd of 30 nM), and product formation occurs with a Km of 400 nM and a kcat of 0.9 s− 1. Site-directed mutagenesis was used to demonstrate that the thumb loop in the catalytic domain is important for efficient catalysis; we propose that the thumb loop positions the tRNA within the active site. Furthermore, a new catalytic arginine residue was identified (arginine 208), which is likely responsible for triggering flipping of the target uridine into the active site of Pus10. Lastly, our data support the proposal that the THUMP-containing domain, found in the N-terminus of Pus10, contributes to binding of tRNA. Together, our findings are consistent with the hypothesis that tRNA binding by Pus10 occurs through an induced-fit mechanism, which is a prerequisite for efficient pseudouridine formation.  相似文献   

7.
Recent kinetic studies established that the positive charge on the trimethylammonium group of choline plays an important role in substrate binding and specificity in the reaction catalyzed by choline oxidase. In the present study, pH and solvent viscosity effects with the isosteric analogue of choline 3,3-dimethyl-butan-1-ol have been used to further dissect the contribution of the substrate positive charge to substrate binding and catalysis in the reaction catalyzed by choline oxidase. Both the kcat and kcat/Km values with 3,3-dimethyl-butan-1-ol increased to limiting values that were approximately 3- and approximately 400-times lower than those observed with choline, defining pKa values that were similar to the thermodynamic pKa value of approximately 7.5 previously determined. No effects of increased solvent viscosity were observed on the kcat and kcat/Km values with the substrate analogue at pH 8, suggesting that the chemical step of substrate oxidation is fully rate-limiting for the overall turnover and the reductive half-reaction in which the alcohol substrate is oxidized to the aldehyde. The kcat/Km value for oxygen determined with the substrate analogue was pH-independent in the pH range from 6 to 10, with an average value that was approximately 75-times lower than that previously determined with choline as substrate. These data are consistent with the positive charge headgroup of choline playing important roles for substrate binding and flavin oxidation, with minimal contribution to substrate oxidation.  相似文献   

8.
We report the steady state ATPase activities of the ATP Binding Cassette (ABC) exporter NaAtm1 in the absence and presence of a transported substrate, oxidized glutathione (GSSG), in detergent, nanodiscs, and proteoliposomes. The steady state kinetic data were fit to the “nonessential activator model” where the basal ATPase rate of the transporter is stimulated by GSSG. The detailed kinetic parameters varied between the different reconstitution conditions, highlighting the importance of the lipid environment for NaAtm1 function. The increased ATPase rates in the presence of GSSG more than compensate for the modest negative cooperativity observed between MgATP and GSSG in lipid environments. These studies highlight the central role of the elusive ternary complex in accelerating the ATPase rate that is at the heart of coupling mechanism between substrate transport and ATP hydrolysis.  相似文献   

9.
Lars Chr. Petersen 《BBA》1979,548(3):636-641
The effect of pH on the oxygen kinetics of cytochrome c oxidase incorporated into phospholipid vesicles is studied. The pH profiles of the oxygen kinetics of energized and deenergized oxidase vesicles are similar. An effect of pH on the slope of the reciprocal plot of rate against oxygen concentration is observed, and this may indicate that protons are involved in the rate limiting step of the reaction between oxygen and reduced oxidase. In contrast to the pH dependence of the oxygen kinetics, the binding of CO to the oxidase is not pH dependent.  相似文献   

10.
Solvent isotope effects and the pH dependence of laccase catalysis under steady-state conditions were examined with a rapid reductant to assess the potential roles of protein protic groups and the catalytic mechanism. The pH dependence of both reductant-dependent and reductant-independent steps showed bell-shaped profiles implicating at least two protic groups in each case. The apparent pKa values were: for the reductant-independent step(s), pK alpha 1 = 8.98 +/- 0.02 and pK alpha 2 = 5.91 +/- 0.03; for the reductant-dependent step(s), pK' alpha 1 = 7.55 +/- 0.12, pK' alpha 2 = 8.40 +/- 0.23. No solvent isotope effect on reductant-dependent steps was detected other than a standard shift effect. However, a significant solvent isotope effect on a reductant-independent step(s) was observed; kH/kD = 2.12 at the pH optimum of 7.5. The concentration dependence of the D2O effect indicated that a single proton was involved. Simulations of the p(H,D) data suggested that the solvent isotope effect was associated with the protein protic group required in its undissociated form (pK alpha 2). The pH effects on reductant-dependent steps are apparently associated with reductant-dependent steps that occur between O2 binding and water formation in the catalytic reaction sequence.  相似文献   

11.
12.
Solvent isotope effects have been observed on the in vitro refolding kinetics of a protein, hen lysozyme. The rates of two distinct phases of refolding resolved by intrinsic fluorescence have been found to be altered, to differing extents, in D2O compared with H2O, and experiments have been conducted aimed at assessing the contributions to these effects from various possible sources. The rates were found to be essentially independent of whether backbone amide nitrogens were protiated or deuterated, indicating that making and breaking of their hydrogen bonding interactions is not associated with a substantial isotope effect. Neither were the rates significantly affected by adding moderate concentrations of sucrose or glycerol to the refolding buffer, suggesting that viscosity differences between H2O and D2O are also unlikely to explain the isotope effects. The data suggest that different factors, acting in opposing directions, may be dominant under different conditions. Thus, the isotope effect on the rate-determining step was found to be qualitatively reversed on going to low pH, suggesting that one component is probably associated with changes in the environments of carboxylate groups in forming the folding transition state. This term disappears at low pH as these groups are protonated and an opposing effect then dominates. It was not possible to identify this other effect on the basis of the present data, but a dependence of the hydrophobic interaction on solvent isotopic composition is a likely candidate.  相似文献   

13.
The kinetics of the activation and anaerobic inactivation processes of Desulfovibrio gigas hydrogenase have been measured in D2O by FTIR spectroelectrochemistry. A primary kinetic solvent isotope effect was observed for the inactivation process but not for the activation step. The kinetics of these processes have been also measured after replacement of a glutamic residue placed near the active site of an analogous [NiFe] hydrogenase from Desulfovibrio fructosovorans. Its replacement by a glutamine affected greatly the kinetics of the inactivation process but only slightly the activation process. The interpretation of the experimental results is that the rate-limiting step for anaerobic inactivation is the formation from water of a -OH bridge at the hydrogenase active site, and that Glu25 has a role in this step.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0559-7  相似文献   

14.
Abstract

The solvent effect on the shape of a tetramer with increasing temperature is analyzed. For this purpose models of an isolated chain and a chain immersed in a solvent have been simulated by Molecular Dynamics. A solvent model represented by stochastic forces has been tested against molecular dynamics results. The behaviour of the mean-square end-to-end distance 〈R 2〉 and 〈l 1 3 S 2〉 with increasing temperature are shown. where l 1 is the longest eigenvalue of the moment of inertia tensor and S is the radius of gyration. All the chain models studied show different behaviour of these quantities at low temperature compared to high temperature where the shape of the tetramer is temperature insensitive. The main solvent effect is to pospone the transition to higher temperature. The stochastic solvent model qualitatively agrees with molecular dynamics results.  相似文献   

15.
(1) Analysis of the data from steady-state kinetic studies shows that two reactions between cytochrome c and cytochrome c oxidase sufficed to describe the concave Eadie-Hofstee plots (Km ? 1 · 10?8M and Km ? 2 · 10?5M). It is not necessary to postulate a third reaction of Km ? 10?6M. (2) Change of temperature, type of detergent and type of cytochrome c affected both reactions to the same extent. The presence of only a single catalytic cytochrome c interaction site on the oxidase could explain the kinetic data. (3) Our experiments support the notion that, at least under our conditions (pH 7.8, low-ionic strength), the dissociation of ferricytochrome c from cytochrome c oxidase is the rate-limiting step in the steady-state kinetics. (4) A series of models, proposed to describe the observed steady-state kinetics, is discussed.  相似文献   

16.
Formulations of an enzyme mechanism where only a single step is presumed to be isotopically sensitive can be written in terms of forward and reverse commitments to catalysis. These commitments provide a natural and intuitive way of interpreting the observed isotope effects. Unfortunately, when multiple isotopically sensitive steps are present in the mechanism, including effects associated with pre-equilibria of the unbound substrate, the observed V/K kinetic isotope effect is expressed as a complicated expression of the intrinsic rate constants for each step, the interpretation of which is not always immediately obvious. We show here that V/K isotope effects from unbranched or rapid-equilibrium random Michaelis-Menten systems containing multiple isotopically sensitive steps can be written as a weighted average of the intrinsic isotope effects on each step, where this intrinsic isotope effect from each step is the product of the equilibrium isotope effect on the formation of the reacting intermediate for that step and the intrinsic kinetic effect on the forward rate constant for that step, and the weighting factors are simply the reciprocal sum of the forward and reverse commitments for each step i plus unity, 1/(C(fi)+C(ri)+1), equivalent to the sensitivity index [Ray, W.J., 1983.  相似文献   

17.
Native and azide reacted Cu, Zn superoxide dismutase in aqueous and mixed water-glycerol solution have been investigated by EPR spectroscopy at low temperature. An accurate computer simulation, based on a well established theoretical model which has been reformulated for rhombic symmetry, has shown that the EPR spectrum of the copper ion in the native protein shows a significant g and A strain in the parallel region. The strain arises from a distribution of the ligand field strengths onto the metal ion and this could be traced back to the existence of a multiplicity of conformational states in the protein molecule. The strain is reduced in the presence of azide which is known to bind directly to the copper atom and to give rise to a more relaxed configuration corresponding to a square pyramidal geometry in which the apical ligand occupies an elongated position. In both samples, addition of glycerol further reduces the strain, indicating that the solvent is directly coupled to the protein matrix, thereby modulating the structural heterogeneity displayed by the protein molecule. Received: 6 June 1996 / Accepted: 9 April 1997  相似文献   

18.
Francis K  Gadda G 《Biochemistry》2006,45(46):13889-13898
Among the enzymes that catalyze the oxidative denitrification of nitroalkanes to carbonyl compounds, 2-nitropropane dioxygenase is the only one known to effectively utilize both the neutral and anionic (nitronate) forms of the substrate. A recent study has established that the catalytic pathway is common to both types of substrates, except for the initial removal of a proton from the carbon of the neutral substrates [Francis, K., Russell, B., and Gadda, G. (2005) J. Biol. Chem. 280, 5195-5204]. In the present study, the mechanistic properties of the enzyme have been investigated with solvent viscosity, pH, and kinetic isotope effects. With nitroethane or ethylnitronate, the kcat/Km and kcat values were independent of solvent viscosity, consistent with the substrate and product binding to the enzyme in rapid equilibrium. The abstraction of the proton from the alpha carbon of neutral substrates was investigated by measuring the pH dependence of the D(kcat/KNE) value with 1,1-[2H2]-nitroethane. The formation of the enzyme-bound flavosemiquinone formed during catalysis was examined by determining the pH dependence of the kcat/Km values with ethylnitronate and nitroethane and the inhibition by m-nitrobenzoate. Finally, alpha-secondary kinetic isotope effects with 1-[2H]-ethylnitronate were used to propose a non-oxidative tautomerization pathway, in which the enzyme catalyzes the interconversion of nitroalkanes between their anionic and neutral forms. The data presented suggest that enzymatic turnover of 2-nitropropane dioxygenase with neutral substrates is limited by the cleavage of the substrate CH bond at low pH, whereas that with anionic substrates is limited by the non-oxidative tautomerization of ethylnitroante to nitroethane at high pH.  相似文献   

19.
The stability and activity of laccase from Trametes versicolor in two water‐soluble ionic liquids (ILs), namely 1‐butyl‐3‐methylimidazolium methyl sulfate, [bmim][MeSO4] and 1,3‐dimethylimidazolium methyl sulfate, [mmim][MeSO4], were investigated in this study. Thermal inactivation of laccase was characterized in the presence of these both ILs and as expected first‐order kinetics was followed. Inactivation rate constant (k), half‐life time (t1/2), and energy of activation (Ea) were determined. Kinetics of 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulfonic acid) oxidation by laccase in the presence of these ILs was studied and Michaelis–Menten parameters were calculated. There is no enzymatic inactivation since the maximum reaction rate remained constant for IL concentrations up to 25%, and surprisingly, it was found that laccase was activated for concentrations of 35% of ILs, since the reaction rate increased 1.7 times.  相似文献   

20.
The aldehyde specificity of xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2) has been reinvestigated. The biogenic aldehydes and succinate semialdehyde are reasonable substrates for xanthine oxidase. Pyrophosphate, which binds to xanthine oxidase, does not seem to affect significantly the enzyme's catalytic activity. The steady-state parameters for the oxidation of several substrates by xanthine oxidase and oxygen have been determined. Formaldehyde differs from xanthine and other aldehydes in phi 2, the parameter describing the reaction with oxygen. Substrate inhibition has been studied at high concentrations of xanthine with oxygen as the electron acceptor. The inhibition is hyperbolic and uncompetitive with respect to oxygen. This is possibly due to rate-limiting product release from molybdenum(IV) being slower than from molybdenum(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号