首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Osteoclasts differentiate from macrophage-lineage cells to become specialized for bone resorption function. By a proteomics approach, we found that Lyn was down-regulated by the osteoclast differentiation factor, receptor activator of NF-κB ligand (RANKL). The forced reduction of Lyn caused a striking increase in the RANKL-induced PLCγ1, Ca2+, and NFATc1 responses during differentiation. These data suggest that Lyn plays a negative role in osteoclastogenesis by interfering with the PLCγ1-mediated Ca2+ signaling that leads to NFATc1 activation. Consistent with the in vitro results, in vivo injection of Lyn specific siRNA into mice calvariae provoked a fulminant bone resorption. Our study provides the first evidence of the involvement of Lyn in the negative regulation of osteoclastogenesis by RANKL.  相似文献   

4.
5.
It has long been known that many bone diseases, including osteoporosis, involve abnormalities in osteoclastic bone resorption. As a result, there has been intense study of the mechanisms that regulate both the differentiation and bone resorbing function of osteoclast cells. Calcium (Ca2+) signaling appears to play a critical role in the differentiation and functions of osteoclasts. Cytoplasmic Ca2+ oscillations occur during RANKL-mediated osteoclastogenesis. Ca2+ oscillations provide a digital Ca2+ signal that induces osteoclasts to up-regulate and autoamplify nuclear factor of activated T cells c1 (NFATc1), a Ca2+/calcineurin-dependent master regulator of osteoclastogenesis. Here we review previous studies on Ca2+ signaling in osteoclasts as well as recent breakthroughs in understanding the basis of RANKL-induced Ca2+ oscillations, and we discuss possible molecular players in this specialized Ca2+ response that appears pivotal for normal bone function. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

6.
7.
8.
Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.  相似文献   

9.
10.
11.
Acid-sensing ion channels (ASICs), a group of Na+-selective and Ca2+-permeant ligand-gated cation channels, can be transiently activated by extracellular acid. Among seven subunits of ASICs, acid-sensing ion channel 1a (ASIC1a), which is responsible for Ca2+ transportation, is elevated in response to inflammation, tumor, and ischemic injury in central nervous system and non-neuronal tissues. In this study, we demonstrated for the first time the presence of ASIC1a in rat liver and hepatic stellate cells (HSCs). Furthermore, the expression of ASIC1a was increased in primary HSCs and liver tissues of CCl4-treated rats, suggesting that ASIC1a may play certain role in liver fibrosis. Interestingly, we identified that the level of ASIC1a was significantly elevated in response to platelet-derived growth factor (PDGF) induction in a time- and dose-dependent manner. It was also established that Ca2+-transporting ASIC1a was involved in acid-induced injury of different cell types. Moreover, inhibition or silencing of ASIC1a was able to inhibit PDGF-induced pro-fibrogenic effects of activated rat HSCs, including cell activation, de novo synthesis of extracellular matrix components through mitogen-activated protein kinase signaling pathway. Collectively, our studies identified that ASIC1a was expressed in rat liver and HSCs and provided a strong evidence for the involvement of the ASIC1a in the progression of hepatic fibrosis.  相似文献   

12.
Acidic microenvironment is commonly observed in ischaemic tissue. In the kidney, extracellular pH dropped from 7.4 to 6.5 within 10 minutes initiation of ischaemia. Acid‐sensing ion channels (ASICs) can be activated by pH drops from 7.4 to 7.0 or lower and permeates to Ca2+entrance. Thus, activation of ASIC1a can mediate the intracellular Ca2+ accumulation and play crucial roles in apoptosis of cells. However, the role of ASICs in renal ischaemic injury is unclear. The aim of the present study was to test the hypothesis that ischaemia increases renal epithelia cell apoptosis through ASIC1a‐mediated calcium entry. The results show that ASIC1a distributed in the proximal tubule with higher level in the renal tubule ischaemic injury both in vivo and in vitro. In vivo, Injection of ASIC1a inhibitor PcTx‐1 previous to ischaemia/reperfusion (I/R) operation attenuated renal ischaemic injury. In vitro, HK‐2 cells were pre‐treated with PcTx‐1 before hypoxia, the intracellular concentration of Ca2+, mitochondrial transmembrane potential (?ψm) and apoptosis was measured. Blocking ASIC1a attenuated I/R induced Ca2+ overflow, loss of ?ψm and apoptosis in HK‐2 cells. The results revealed that ASIC1a localized in the proximal tubular and contributed to I/R induced kidney injury. Consequently, targeting the ASIC1a may prove to be a novel strategy for AKI patients.  相似文献   

13.
14.
15.
Imbalance of osteoblast and osteoclast in adult leads to a variety of bone‐related diseases, including osteoporosis. Thus, suppressing the activity of osteoclastic bone resorption becomes the main therapeutic strategy for osteoporosis. Asperpyrone A is a natural compound isolated from Aspergillus niger with various biological activities of antitumour, antimicrobial and antioxidant. The present study was designed to investigate the effects of Asperpyrone A on osteoclastogenesis and to explore its underlining mechanism. We found that Asperpyrone A inhibited RANKL‐induced osteoclastogenesis in a dose‐dependent manner when the concentration reached 1 µm, and with no cytotoxicity until the concentration reached to 10 µm. In addition, Asperpyrone A down‐regulated the mRNA and protein expression of NFATc1, c‐fos and V‐ATPase‐d2, as well as the mRNA expression of TRAcP and Ctsk. Furthermore, Asperpyrone A strongly attenuated the RNAKL‐induced intracellular Ca2+ oscillations and ROS (reactive oxygen species) production in the process of osteoclastogenesis and suppressed the activation of MAPK and NF‐κB signalling pathways. Collectively, Asperpyrone A attenuates RANKL‐induced osteoclast formation via suppressing NFATc1, Ca2+ signalling and oxidative stress, as well as MAPK and NF‐κB signalling pathways, indicating that this compound may become a potential candidate drug for the prevention or treatment of osteoporosis.  相似文献   

16.
We investigated here whether adiponectin can exhibit an inhibitory effect on tumor necrosis factor-alpha (TNF-alpha)- and receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis by using RAW264 cell D clone with a high efficiency to form osteoclasts. Globular adiponectin (gAd) strongly inhibited TNF-alpha/RANKL-induced differentiation of osteoclasts by interfering with TNF receptor-associated factor 6 production and calcium signaling; consequently, the induction of nuclear factor of activated T cells c1 (NFATc1) was strongly inhibited. Moreover, we observed that inhibition of AMP-activated protein kinase abrogated gAd inhibition for TNF-alpha/RANKL-induced NFATc1 expression. Our data suggest that adiponectin acts as a potent regulator of bone resorption observed in diseases associated with cytokine activation.  相似文献   

17.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

18.
Acid Sensing Ion Channels (ASICs) are a family of proton-gated cation channels that play a role in the sensation of noxious stimuli. Of these, ASIC1a is the only family member that is reported to be permeable to Ca2+, although the absolute magnitude of the Ca2+ current is unclear. Here, we used patch-clamp photometry to determine the contribution of Ca2+ to total current through native and recombinant ASIC1a receptors. We found that acidification of the extracellular medium evoked amiloride and psalmotoxin 1-sensitive currents in isolated chick dorsal root ganglion neurons and human embryonic kidney cells, but did not alter fura-2 fluorescence when the bath concentration of Ca2+ was close to that found in normal physiological conditions. Further, activation of recombinant ASIC1a receptors also failed to produce measurable changes in fluorescence despite of the fact that the total cation current through the over-expressed receptor was ten-fold larger than that of the native channels. Finally, we imaged a field of intact DRG neurons loaded with the Ca2+-sensing dye Fluo-4, and found that acidification increased [Ca2+]i in a small population of cells. Thus, although our whole-field imaging data agree with previous studies that activation of ASIC1a receptors can potentially cause elevations in intracellular free Ca2+, our single cell data strongly challenges the view that Ca2+ entry through the ASIC1a receptor itself contributes to this response.  相似文献   

19.
20.
Osteoclast differentiation is one of the critical steps that control bone mass levels in osteoporosis, but the molecules involved in osteoclastogenesis are still incompletely understood. Here, we show that two-pore channel 2 (TPC2) is expressed in osteoclast precursor cells, and its knockdown (TPC2-KD) in these cells suppressed RANKL-induced key events including multinucleation, enhancement of tartrate-resistant acid phosphatase (TRAP) activities, and TRAP mRNA expression levels. With respect to intracellular signaling, TPC2-KD reduced the levels of the RANKL-induced dynamic waving of Ca2+ in RAW cells. The search for the target of TPC2 identified that nuclear localization of NFATc1 is retarded in TPC2-KD cells. Finally, TPC2-KD suppressed osteoclastic pit formation in cultures. We conclude that TPC2 is a novel critical molecule for osteoclastogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号