首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects.  相似文献   

2.
Shen DK  Xu XL  Zhang Y  Song JJ  Yan XC  Guo MC 《Biopolymers》2012,97(10):818-824
Anticoagulation factor II (ACF II), a coagulation factor X- binding protein from the venom of Agkistrodon acutus has both anticoagulant and hypotensive activities. Previous studies show that ACF II binds specifically with activated factor X (FXa) in a Ca(2+) -dependent manner and inhibits intrinsic coagulation pathway. In this study, the inhibition of extrinsic coagulation pathway by ACF II was measured in vivo by prothrombin time assay and the binding of ACF II to factor IX (FIX) was investigated by native polyacrylamide gel electrophoresis and surface plasmon resonance (SPR). The results indicate that ACF II also inhibits extrinsic coagulation pathway, but does not inhibit thrombin activity. ACF II also binds with FIX with high binding affinity in a Ca(2+) -dependent manner and their maximal binding occurs at about 0.1 mM Ca(2+) . ACF II has similar binding affinity to FIX and FX as determined by SPR. Ca(2+) has a slight effect on the secondary structure of FIX as determined by circular dichroism spectroscopy. Ca(2+) ions are required to maintain in vivo function of FIX Gla domain for its recognition of ACF II. However, Ca(2+) at high concentrations (>0.1 mM) inhibits the binding of ACF II to FIX. Ca(2+) functions as a switch for the binding between ACF II and FIX. ACF II extends activated partial thromboplastin time more strongly than prothrombin time, suggesting that the binding of ACF II with FIX may play a dominant role in the anticoagulation of ACF II in vivo.  相似文献   

3.
Human factor IX is synthesized in the liver and secreted in the blood, where it participates in a group of reactions involving coagulation factors and proteins that permit sanguinary coagulation. In this work two lines of transgenic mice were developed to express the FIX gene in the mammalian glands under control of milk β-casein promoter. The founding females secreted the FIX in their milk (3% total soluble protein). The stable integration of transgene was confirmed by southern blot analysis. The presence of the FIX recombinant protein in the milk of transgenic females was confirmed by western blot and the clotting activity was revealed in blood-clotting assays. The coagulation activity in human blood treated with recombinant FIX increased while the time of coagulation decreased. Our results confirm the production of a large amount of recombinant biologically active FIX in the mammary gland of transgenic mice.  相似文献   

4.
We previously reported that the first epidermal growth factor-like (EGF1) domain in factor X (FX) or factor IX (FIX) plays an important role in the factor VIIa/tissue factor (FVIIa/TF)-induced coagulation. To assess the role of gamma-carboxyglutamic acid (Gla) domains of FX and FIX in FVIIa/TF induced coagulation, we studied four new and two previously described replacement mutants: FX(PCGla) and FIX(PCGla) (Gla domain replaced with that of protein C), FX(PCEGF1) and FIX(PCEGF1) (EGF1 domain replaced with that of protein C), as well as FX(PCGla/EGF1) and FIX(PCGla/EGF1) (both Gla and EGF1 domains replaced with those of protein C). FVIIa/TF activation of each FX mutant and the corresponding reciprocal activation of FVII/TF by each FXa mutant were impaired. In contrast, FVIIa/TF activation of FIX(PCGla) was minimally affected, and the reciprocal activation of FVII/TF by FIXa(PCGla) was normal; however, both reactions were impaired for the FIX(PCEGF1) and FIX(PCGla/EGF1) mutants. Predictably, FXIa activation of FIX(PCEGF1) was normal, whereas it was impaired for the FIX(PCGla) and FIX(PCGla/EGF1) mutants. Molecular models reveal that alternate interactions exist for the Gla domain of protein C such that it is comparable with FIX but not FX in its binding to FVIIa/TF. Further, additional interactions exist for the EGF1 domain of FX, which are not possible for FIX. Importantly, a seven-residue insertion in the EGF1 domain of protein C prevents its interaction with FVIIa/TF. Cumulatively, our data provide a molecular framework demonstrating that the Gla and EGF1 domains of FX interact more strongly with FVIIa/TF than the corresponding domains in FIX.  相似文献   

5.
Inefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking.  相似文献   

6.
Jenna S  Sureau C 《Journal of virology》1999,73(4):3351-3358
The carboxyl-terminal domain of the small (S) envelope protein of hepatitis B virus was subjected to mutagenesis to identify sequences important for the envelopment of the nucleocapsid during morphogenesis of hepatitis delta virus (HDV) virions. The mutations consisted of carboxyl-terminal truncations of 4 to 64 amino acid residues and small combined deletions and insertions spanning the entire hydrophobic domain between residues 163 and 224. Truncation of as few as 14 residues partially inhibited glycosylation and secretion of S and prevented assembly or stability of HDV virions. Short internal combined deletions and insertions were tolerated for secretion of subviral particles with the exceptions of those affecting residues 164 to 173 and 219 to 223. However, mutants competent for subviral particle secretion had a reduced capacity for HDV assembly compared to that of the wild type. One exception was a mutant carrying a deletion of residues 214 to 218, which exhibited a twofold increase in HDV assembly (or stability), whereas deletions of residues 179 to 183, 194 to 198, and 199 to 203 were the most inhibitory. Substitutions of single amino acids between residues 194 and 198 demonstrated that HDV assembly deficiency could be assigned to the replacement of the tryptophan residue at position 196. We concluded that assembly of stable HDV particles requires a specific function of the carboxyl terminus of S which is mediated at least in part by Trp-196.  相似文献   

7.
Human MCFD2 (multiple coagulation factor deficiency 2) is a 16-kDa protein known to participate in transport of the glycosylated human coagulation factors V and VIII along the secretory pathway. Mutations in MCFD2 or in its binding partner, the membrane-bound transporter ERGIC (endoplasmic reticulum-Golgi intermediate compartment)-53, cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). While ERGIC-53 is known to be a lectin-type mannose binding protein, the role of MCFD2 in the secretory pathway is comparatively unclear. MCFD2 has been shown to bind both ERGIC-53 and the blood coagulation factors, but little is known about the binding sites or the true function of the protein. In order to facilitate understanding of the function of MCFD2 and the mechanism by which mutations in the protein cause F5F8D, we have determined the structure of human MCFD2 in solution by NMR. Our results show the folding of MCFD2 to be dependent on availability of calcium ions. The protein, which is disordered in the apo state, folds upon binding of Ca2+ to the two EF-hand motifs of its C-terminus, while retaining some localized disorder in the N-terminus. NMR studies on two disease-causing mutant variants of MCFD2 show both to be predominantly disordered, even in the presence of calcium ions. These results provide an explanation for the previously observed calcium dependence of the MCFD2-ERGIC-53 interaction and, furthermore, clarify the means by which mutations in this protein result in inefficient secretion of blood coagulation factors V and VIII.  相似文献   

8.
Although protein Z (PZ) has a domain arrangement similar to the essential coagulation proteins FVII, FIX, FX, and protein C, its serine protease (SP)-like domain is incomplete and does not exhibit proteolytic activity. We have generated a trial sequence of putative activated protein Z (PZa) by identifying amino acid mutations in the SP-like domain that might reasonably resurrect the serine protease catalytic activity of PZ. The structure of the activated form was then modeled based on the proposed sequence using homology modeling and solvent-equilibrated molecular dynamics simulations. In silico docking of inhibitors of FVIIa and FXa to the putative active site of equilibrated PZa, along with structural comparison with its homologous proteins, suggest that the designed PZa can possibly act as a serine protease.  相似文献   

9.
The absence or reduced activity of coagulation factor IX (FIX) causes the severe bleeding disorder hemophilia B. FIX contains an N-terminal Gla domain followed by two epidermal growth factor-like (EGF) domains and a serine protease domain. In this study, the epitope of monoclonal antibody AW, which is directed against the C-terminal part of the first EGF domain in human FIX, was defined, and the antibody was used to study interactions between the EGF domain of FIX and other coagulation proteins. Antibody AW completely blocks activation of FIX by activated factor XI, but activation by activated factor FVII-tissue factor is inhibited only slightly. The antibody also causes a marginal reduction in the apparent k(cat) for factor X both in the presence and absence of activated factor VIII. Based on these results, we produced a preliminary model of the structure of the activated factor IX-activated factor VIII-AW complex on the surface of phospholipid. The model suggests that in the Xase complex, EGF1 of activated factor IX is not involved in direct binding to activated factor VIII. Studies of the interaction of antibody AW with a mutated FIX molecule (R94D) also suggest that the Glu(78)-Arg(94) salt bridge is not important for maintaining the structure of FIX.  相似文献   

10.
目的 鉴定凝血因子IX基因剔除小鼠。方法 采用PCR扩增检测小鼠的DNA样品以及采用一期法检定小鼠血浆FIX活性和血浆凝血酶原时间 (plasmaprothrombintime ,PT)、白陶土部分凝血活酶时间 (Kaolinpartialthromboplastintime ,KPTT)值。结果 小鼠PCR检测为阳性 ,FIX活性 <5 %。结论 凝血因子IX基因剔除小鼠能稳定遗传 ,鉴定结果提示该小鼠符合人血友病B相应临床症状。  相似文献   

11.
Factors VII, IX, and X play key roles in blood coagulation. Each protein contains an N-terminal gamma-carboxyglutamic acid domain, followed by EGF1 and EGF2 domains, and the C-terminal serine protease domain. Protein C has similar domain structure and functions as an anticoagulant. During physiologic clotting, the factor VIIa-tissue factor (FVIIa*TF) complex activates both factor IX (FIX) and factor X (FX). FVIIa represents the enzyme, and TF represents the membrane-bound cofactor for this reaction. The substrates FIX and FX may utilize multiple domains in binding to the FVIIa*TF complex. To investigate the role of the EGF1 domain in this context, we expressed wild type FIX (FIX(WT)), FIX(Q50P), FIX(PCEGF1) (EGF1 domain replaced with that of protein C), FIX(DeltaEGF1) (EGF1 domain deleted), FX(WT), and FX(PCEGF1). Complexes of FVIIa with TF as well as with soluble TF (sTF) lacking the transmembrane region were prepared, and activations of WT and mutant proteins were monitored by SDS-PAGE and by enzyme assays. FVIIa*TF or FVIIa*sTF activated each mutant significantly more slowly than the FIX(WT) or FX(WT). Importantly, in ligand blot assays, FIX(WT) and FX(WT) bound to sTF, whereas mutants did not; however, all mutants and WT proteins bound to FVIIa. Further experiments revealed that the affinity of the mutants for sTF was reduced 3-10-fold and that the synthetic EGF1 domain (of FIX) inhibited FIX binding to sTF with K(i) of approximately 60 microm. Notably, each FIXa or FXa mutant activated FVII and bound to antithrombin, normally indicating correct folding of each protein. In additional experiments, FIXa with or without FVIIIa activated FX(WT) and FX(PCEGF1) normally, which is interpreted to mean that the EGF1 domain of FX does not play a significant role in its interaction with FVIIIa. Cumulatively, our data reveal that substrates FIX and FX in addition to interacting with FVIIa (enzyme) interact with TF (cofactor) using, in part, the EGF1 domain.  相似文献   

12.
Thrombopoietin (TPO), the primary regulator of platelet production, is composed of an amino-terminal 152 amino acids, sufficient for activity, and a carboxyl-terminal region rich in carbohydrates (183 residues) that enhances secretion of the molecule. Full-length TPO is secreted at levels 10-20-fold greater than truncated TPO. By introducing into mammalian cells a novel cDNA encoding the TPO secretory leader linked to its carboxyl-terminal domain (TPO glycan domain (TGD)), we tested whether TGD could function in trans to enhance secretion of TPO. The artificial TGD was secreted, inactive in proliferation assays, and did not inhibit TPO activity. However, when co-transfected with a cDNA encoding truncated TPO, TGD enhanced secretion 4-fold, measured by specific bioassay and immunoassay. TGD also enhanced secretion of granulocyte monocyte colony-stimulating factor and stem cell factor but did not affect the production of erythropoietin, interleukin-3, growth hormone, or of full-length TPO. To localize TGD function, we added an endoplasmic reticulum (ER) retention signal to TGD and, separately, deleted the secretory leader. Deletion of the secretory leader attenuated the secretory function of TGD, whereas addition of the ER retention signal did not alter its function. To investigate the physiologic role of TGD in folding and proteasomal protection, we tested full-length and truncated TPO in assays of protein refolding, and we examined protein stability in the presence of proteasome inhibitors. We found that truncated TGD re-folds readily and that proteasome-mediated degradation contributes to the poor secretion of truncated TPO. We conclude that TGD enhances secretion of TPO and can additionally function as an inter-molecular chaperone, in part because of its ability to prevent degradation of the hormone. The cellular location of TGD action is likely to be within the ER or earlier in the secretory pathway.  相似文献   

13.
Perilipin A is the most abundant lipid droplet-associated protein in adipocytes and serves important functions in regulating triacylglycerol levels by reducing rates of basal lipolysis and facilitating hormonally stimulated lipolysis. We have previously shown that the central region of perilipin A targets and anchors it to lipid droplets, at least in part via three moderately hydrophobic sequences that embed the protein into the hydrophobic core of the droplet. The current study examines the roles of the amino and carboxyl termini of perilipin A in facilitating triacylglycerol storage. Amino- and carboxyl-terminal truncation mutations of mouse perilipin A were stably expressed in 3T3-L1 preadipocytes, which lack perilipins. Triacylglycerol content of the cells was quantified as a measure of perilipin function and was compared with that of cells expressing full-length perilipin A or control cells lacking perilipins. The amino-terminal sequence between amino acids 122 and 222, including four 10-11-amino acid sequences predicted to form amphipathic beta-strands and a consensus site for cAMP-dependent protein kinase, and the carboxyl terminus of 112 amino acids that is unique to perilipin A were critical to facilitate triacylglycerol storage. The precocious expression of full-length perilipin A in 3T3-L1 preadipocytes aided more rapid storage of triacylglycerol during adipose differentiation. By contrast, the expression of highly truncated amino- or carboxyl-terminal mutations of perilipin failed to serve a dominant negative function in lowering triacylglycerol storage during adipose differentiation. We conclude that the amino and carboxyl termini are critical to the function of perilipin A in facilitating triacylglycerol storage.  相似文献   

14.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is the smallest transforming protein yet described. Previous results from our laboratory indicate that a hydrophobic core and specific carboxyl-terminal amino acids are required for the E5 protein to exert its transforming function. In this study, additional substitution mutations were generated in the E5 gene to determine the minimal amino acid sequence requirements for focus formation in mouse C127 cells. In most cases examined, substitution of the hydrophobic middle third of the E5 protein with unrelated hydrophobic sequences severely inhibited transforming activity. However, we have identified one hydrophobic amino acid sequence apparently unrelated to the wild-type one that can replace the middle third of the wild-type E5 protein without affecting the ability of the protein to stably transform cells or interact with cell membranes. Furthermore, a mutant E5 protein in which only the carboxyl-terminal 16 amino acids of the protein have been derived from E5 sequences retains transforming activity. Since several residues in the carboxyl-terminal portion of the E5 protein can be freely substituted with different amino acids (B. H. Horwitz, A. L. Burkhardt, R. Schlegel, and D. DiMaio, Mol. Cell. Biol. 8:4071-4078, 1988), the results reported here imply that much of the specific information necessary for cell transformation can be supplied by a subset of the carboxyl-terminal 16 amino acids of this protein.  相似文献   

15.
BackgroundChemotherapy induces the release of apoptotic vesicles (ApoV) from the tumor plasma membrane. Tumor ApoV may enhance the risk of thrombotic events in cancer patients undergoing chemotherapy. However, the relative contribution of ApoV to coagulation and the pathways involved remain poorly characterized. In addition, this study sets out to compare the procoagulant activity of chemotherapy-induced ApoV with their cell of origin and to determine the mechanisms of ApoV-induced coagulation.MethodsWe utilized human and murine cancer cell lines and chemotherapeutic agents to determine the requirement for the coagulation factors (tissue factor; TF, FII, FV, FVII, FVIII, FIX and phosphatidylserine) in the procoagulant activity of ApoV. The role of previously identified ApoV-associated FV was determined in a FV functional assay.ResultsApoV were significantly more procoagulant per microgram of protein compared to parental living or dying tumor cells. In the phase to peak fibrin generation, procoagulant activity was dependent on phosphatidylserine, TF expression, FVII and the prothrombinase complex. However, the intrinsic coagulation factors FIX and FVIII were dispensable. ApoV-associated FV could not support coagulation in the absence of supplied, exogenous FV.ConclusionsApoV are significantly more procoagulant than their parental tumor cells. ApoV require the extrinsic tenase and prothrombinase complex to activate the early phase of coagulation. Endogenous FV identified on tumor ApoV is serum-derived and functional, but is non-essential for ApoV-mediated fibrin generation.General significanceThis study clarifies the mechanisms of procoagulant activity of vesicles released from dying tumor cells.  相似文献   

16.
Blood coagulation factor IX (FIX) undergoes various post-translational modifications such as gamma-carboxylation and glycosylation. Non-phosphorylated recombinant FIX has been reported to rapidly disappear from plasma, indicating that phosphorylation of FIX plays an important role in the physiological activity of this coagulation factor. In this study, we characterized the human FIX activation peptide (AP) using a monoclonal antibody that recognizes phosphorylated Ser-158 in the AP region. Murine monoclonal antibody B1 against human FIX recognized FIX with an apparent K(d) value of 5 nm in the presence of Ca(2+) (EC(50) = 0.58 mm). B1 bound to the isolated AP of FIX and retained the Ca(2+) dependence of binding to the isolated AP. The deglycosylation of AP did not affect the binding of B1 to AP, while B1 failed to bind to recombinant AP expressed in Escherichia coli. MALDI-TOF mass spectrometry showed that the m/z of plasma-derived deglycosylated AP is 82.54 Da greater than that of recombinant AP. The binding ability of B1 to AP was lost by the dephosphorylation of plasma-derived AP. B1 bound to synthetic peptide AP-(5-19), including phosphoserine-13, but not to the non-phosphorylated AP-(5-19) in the presence of Ca(2+). These data provide direct evidence that Ser-13 of the plasma-derived FIX AP region (Ser-158 of FIX) is phosphorylated and that B1 recognizes the epitope, which includes Ca(2+)-bound phosphoserine-158. B1 should be useful in the quality control of biologically active recombinant FIX containing phosphoserine-158.  相似文献   

17.
We have previously demonstrated that the carboxyl-terminal propeptide of barley lectin is both necessary and sufficient for protein sorting to the plant vacuole. Specific mutations were constructed to determine which amino acid residues or secondary structural determinants of the carboxyl-terminal propeptide affect proper protein sorting. We have found that no consensus sequence or common structural determinants are required for proper sorting of barley lectin to the vacuole. However, our analysis demonstrated the importance of hydrophobic residues in vacuolar targeting. In addition, at least three exposed amino acid residues are necessary for efficient sorting. Sorting was disrupted by the addition of two glycine residues at the carboxyl-terminal end of the targeting signal or by the translocation of the glycan to the carboxy terminus of the propeptide. These results suggest that some components of the sorting apparatus interact with the carboxy terminus of the propeptide.  相似文献   

18.
19.
There is evidence that high plasma levels of factor (F) VIII, FIX, FXI and fibrinogen are independent risk factors for venous thromboembolism. AIM: To determine the plasma concentrations of several coagulation factors and C4b-binding protein (C4BP) in a group of patients with non-metastatic colorectal cancer in order to investigate some aspects of cancer-acquired thrombophilia. METHODS: Plasma fibrinogen, FII, FV, FVII, FVIII, FIX, FX, FXI and FXII activity levels and C4BP concentrations were determined in 73 patients with non-metastatic colorectal cancer (48 colon and 25 rectum) and in 67 matched control subjects. No one in either group had had previous thrombotic events. RESULTS: Mean plasma concentrations of fibrinogen (functional and antigen), FVIII, FIX, FV and C4BP were significantly higher in colorectal cancer patients than in control subjects, while FVII and FXII levels were significantly decreased. Several correlations were found between the increased coagulation factors and C4BP concentrations, while FVII was highly correlated with FXII. CONCLUSIONS: In colorectal cancer patients high plasma fibrinogen, FVIII and FIX levels might represent further risk factors for venous thrombotic complications in the immediate post-surgery period, while decreased FVII and FXII concentrations may be an index of intravascular coagulation activation, still in a subclinical phase.  相似文献   

20.
Factor X (FX) has high structure homology with other proteins of blood coagulation such as factor IX (FIX) and factor VII (FVII). These proteins present at their amino-terminal extremity a gamma-carboxyglutamic acid containing domain (Gla domain), followed by two epidermal growth factor-like (EGF1 and EGF2) domains, an activation peptide, and a serine protease domain. After vascular damage, the tissue factor-FVIIa (TF-FVIIa) complex activates both FX and FIX. FXa interacts stoichiometrically with tissue pathway inhibitor (TFPI), regulating TF-FVIIa activity by forming the TF-FVIIa-TFPI-FXa quaternary complex. Conversely, FXa boosts coagulation by its association with its cofactor, factor Va (FVa). To investigate the contribution of the Gla and EGF1 domains of FX in these complexes, FX chimeras were produced in which FIX Gla and EGF1 domains substituted the corresponding domains of FX. The affinity of the two chimeras, FX/FIX(Gla) and FX/FIX(EGF1), for the TF-FVIIa complex was markedly reduced compared with that of wild-type-FX (wt-FX) independently of the presence of phospholipids. Furthermore, the association rate constants of preformed FX/FIX(Gla)-TFPI and FX/FIX(EGF1)-TFPI complexes with TF-FVIIa were, respectively, 10- and 5-fold slower than that of wt-FXa-TFPI complex. Finally, the apparent affinity of FVa was 2-fold higher for the chimeras than for wt-FX in the presence of phospholipids and equal in their absence. These data demonstrate that FX Gla and EGF1 domains contain residues, which interact with TF-FVIIa exosites contributing to the formation of the TF-FVIIa-FX and TF-FVIIa-TFPI-FXa complexes. On the opposite, FXa Gla and EGF1 domains are not directly involved in FVa binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号