首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mucus hypersecretion is a major manifestation in patients with chronic inflammatory airway diseases, and MUC5AC protein is a major component of airway mucus. Earlier studies have demonstrated that neutrophil elastase (NE), a serine protease, mainly produced by neutrophils, stimulates the production of MUC5AC from airway epithelial cells. The microRNA miR-146a has been linked to inflammatory diseases. However, the role of miR-146a in the NE-induced MUC5AC expression remains unclear. Here, we show that NE exerts a dose- and time-dependent induction of both MUC5AC and miR-146a in human bronchial epithelial cells (16HBE). Ectopic expression of miR-146a in 16HBE cells inhibited the stimulation of MUC5AC by NE, while, conversely, depletion of endogenous miR-146a enhanced the MUC5AC production. Knockdown of intrinsic miR-146a activated both c-Jun N-terminal kinase (JNK) and nuclear factor-kappaB (NF-κB) signaling pathways. Moreover, targeting JNK or NF-κB by specific chemical inhibitors blocked the upregulation of MUC5AC by miR-146a silencing. Taken together, our data highlight a negative feedback role for miR-146a in the control of MUC5AC production from airway epithelial cells stimulated by NE, which may be associated with the inactivation of JNK and NF-κB signaling.  相似文献   

3.
4.
The airway epithelium is the initial barrier against airborne pathogens, and it plays many roles in host airway defense. Legionella pneumophila is an intracellular pathogen that causes rapidly advancing pneumonia and is sometimes life-threatening. Here, we evaluated the role of the airway epithelial cells in the defense against L.?pneumophila by examining mucus production in vitro. The production of MUC5AC, a major mucin protein, was not induced by formalin- or ultraviolet-killed L.?pneumophila, but it was induced by live L.?pneumophila. Similarly, nuclear factor-kappaB (NF-κB) was activated only by live L.?pneumophila. Inhibitors of ERK and JNK, but not p38, dose-dependently inhibited the induction of MUC5AC by live L.?pneumophila. Inhibition of intracellular invasion by cytochalasin D did not affect MUC5AC production. Taken together, the results suggest that live L.?pneumophila induces MUC5AC production via the ERK-JNK and NF-κB pathways without internalization of bacteria and that the airway epithelium produces mucin as part of the immune response against L.?pneumophila.  相似文献   

5.
The surface of the human respiratory tract is covered with a mucus layer containing mucin 5AC (MUC5AC) and mucin 5B (MUC5B) as the main components. This layer contributes to biological defense by eliminating irritants, but excessive MUC5AC secretion by the airway epithelial cells exacerbates asthma. Therefore, regulating mucin production is important for asthma treatment. In this study, the effects of integrin β1 subunit on MUC5AC and MUC5B production were examined in NCI–H292 human lung cancer epithelial cells. When integrin β1 was overexpressed, cellular and secreted MUC5AC levels were decreased, whereas cellular MUC5B production was increased. Conversely, integrin β1 depletion using siRNA increased cellular and secreted MUC5AC production, but decreased cellular MUC5B production. Further, the activity of extracellular signal-regulated kinase (ERK), which promotes MUC5AC production, was decreased by integrin β1 overexpression and increased by its depletion. These results suggest that integrin β1 suppresses MUC5AC production and promotes MUC5B production by downregulating ERK.  相似文献   

6.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

7.
Mucin overproduction is a hallmark of chronic inflammatory airway diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Excessive production of mucin leads to airway mucus obstruction and contributes to morbidity and mortality in these diseases. The molecular mechanisms underlying mucin overproduction, however, still remain largely unknown. Here, we report that the bacterium P. aeruginosa, an important human respiratory pathogen causing cystic fibrosis, utilizes reactive oxygen species (ROS) to up-regulate MUC5AC mucin expression. Pseudomonas aeruginosa lipopolysaccharide (PA-LPS) induces production of ROS through protein kinase C (PKC)-NADPH oxidase signaling pathway in human epithelial cells. Subsequently, ROS generation by PA-LPS releases transforming growth factor-α (TGF-α), which in turn, leads to up-regulate MUC5AC expression. These findings may bring new insights into the molecular pathogenesis of P. aeruginosa infections and lead to novel therapeutic intervention for inhibiting mucin overproduction in patients with P. aeruginosa infections.  相似文献   

8.
Neutrophil products are implicated in hypersecretory airway diseases. To determine the mechanisms linking a proteolytic effect of human neutrophil elastase (HNE) and mucin overproduction, we examined the effects of HNE on MUC5AC mucin production in human airway epithelial (NCI-H292) cells. Stimulation with HNE for 5-30 min induced MUC5AC production 24 h later, which was prevented by HNE serine active site inhibitors, implicating a proteolytic effect of HNE. MUC5AC induction was preceded by epidermal growth factor receptor (EGFR) tyrosine phosphorylation and was prevented by selective EGFR tyrosine kinase inhibitors, implicating EGFR activation. HNE-induced MUC5AC production was inhibited by a neutralizing transforming growth factor-alpha (TGF-alpha, an EGFR ligand) antibody and by a neutralizing EGFR antibody but not by oxygen free radical scavengers, further implicating TGF-alpha and ligand-dependent EGFR activation in the response. HNE decreased pro-TGF-alpha in NCI-H292 cells and increased TGF-alpha in cell culture supernatant. From these results, we conclude that HNE-induced MUC5AC mucin production occurs via its proteolytic activation of an EGFR signaling cascade involving TGF-alpha.  相似文献   

9.
Mucus hypersecretion is a prominent manifestation in patients with chronic inflammatory airway diseases and contributes to their morbidity and mortality by plugging airways and causing recurrent infections. Human neutrophil elastase (HNE) exists in high concentrations (1-20 microM) in airway secretions of these patients and induces overproduction of MUC5AC mucin, a major component of airway mucus. Previous studies showed that HNE induces MUC5AC mucin production involving reactive oxygen species (ROS) generation and TGF-alpha-dependent epidermal growth factor receptor (EGFR) activation in human airway epithelial cells. However, the molecular mechanisms involved in these responses are not defined. TNF-alpha-converting enzyme (TACE) cleaves pro-TGF-alpha into soluble TGF-alpha and can be activated by ROS. We hypothesize that HNE activates TACE via ROS generation, resulting in cleavage of pro-TGF-alpha, EGFR activation, and MUC5AC mucin expression in airway epithelial cells. Here we show that in human airway epithelial cells HNE increases TGF-alpha release, EGFR phosphorylation, and MUC5AC mucin expression, effects that were attenuated by TACE inhibitor TAPI-1 and by specific knockdown of TACE expression with small interfering RNA, implicating TACE in HNE-induced responses. These responses to HNE were also reduced by pretreatment with ROS scavengers, implicating ROS. Furthermore, we show that HNE causes protein kinase C (PKC) activation and translocation from cytosol to plasma membrane; blockade of this effect by PKC inhibitors reduced HNE-induced ROS generation and other responses, implicating PKC. We conclude that HNE induces MUC5AC mucin expression via a cascade involving PKC-ROS-TACE in human airway epithelial cells.  相似文献   

10.
11.
Mucus hypersecretion is an important manifestation in patients with chronic inflammatory airway diseases. Excessive production of mucin leads to airway mucus obstruction and contributes to morbidity and mortality in these diseases. The molecular mechanisms underlying mucin overproduction, however, still remain largely unknown. Here, we report that the bacterium Pseudomonas aeruginosa (P. aeruginosa), an important human respiratory pathogen, induced MUC5AC mucin expression via an epithelial cell signaling cascade in human airway epithelial cells. The flagellin purified from P. aeruginosa up-regulated MUC5AC expression by activating its receptor Toll-like receptor 5 (TLR5) in 16HBE cells. This effect was inhibited by NADPH oxidase inhibitor (DPI), small interfering RNA of dual oxidase 2 (Duox2) and reactive oxygen species (ROS) scavengers (nPG and DMSO). Flagellin induced TGF-α release, and stimulated phosphorylated epidermal growth factor receptor (EGFR) and MUC5AC overproduction. These effects were prevented by EGFR and TGF-α neutralizing antibodies, metalloprotease inhibitors (GM6001 and TNF-α protease inhibitor-1) and specific knockdown of TNF-α-converting enzyme (TACE) with TACE siRNA. These findings may bring new insights into the molecular pathogenesis of P. aeruginosa infections and lead to novel therapeutic intervention for mucin overproduction in patients with P. aeruginosa infections.  相似文献   

12.
MUC1 is a membrane-tethered mucin glycoprotein expressed on the apical surface of mucosal epithelial cells. Previous in vivo and in vitro studies established that MUC1 counterregulates airway inflammation by suppressing TLR signaling. In this article, we elucidate the mechanism by which MUC1 inhibits TLR5 signaling. Overexpression of MUC1 in HEK293 cells dramatically reduced Pseudomonas aeruginosa-stimulated IL-8 expression and decreased the activation of NF-κB and MAPK compared with cells not expressing MUC1. However, overexpression of MUC1 in HEK293 cells did not affect NF-κB or MAPK activation in response to TNF-α. Overexpression of MyD88 abrogated the ability of MUC1 to inhibit NF-κB activation, and MUC1 overexpression inhibited flagellin-induced association of TLR5/MyD88 compared with controls. The MUC1 cytoplasmic tail associated with TLR5 in all cells tested, including HEK293T cells, human lung adenocarcinoma cell line A549 cells, and human and mouse primary airway epithelial cells. Activation of epidermal growth factor receptor tyrosine kinase with TGF-α induced phosphorylation of the MUC1 cytoplasmic tail at the Y46EKV sequence and increased association of MUC1/TLR5. Finally, in vivo experiments demonstrated increased immunofluorescence colocalization of Muc1/TLR5 and Muc1/phosphotyrosine staining patterns in mouse airway epithelium and increased Muc1 tyrosine phosphorylation in mouse lung homogenates following P. aeruginosa infection. In conclusion, epidermal growth factor receptor tyrosine phosphorylates MUC1, leading to an increase in its association with TLR5, thereby competitively and reversibly inhibiting recruitment of MyD88 to TLR5 and downstream signaling events. This unique ability of MUC1 to control TLR5 signaling suggests its potential role in the pathogenesis of chronic inflammatory lung diseases.  相似文献   

13.
Airway mucus overproduction is a distinguishing feature of chronic obstructive pulmonary disease (COPD). LL-37 is the only member of human cathelicidins family of antimicrobial peptides and plays a central role in many immune and inflammatory reactions. Increasing evidence suggests the involvement of LL-37 in the pathogenesis of COPD. Here, we investigated the effects of LL-37 on airway mucus overproduction in COPD. We observed overexpression of both LL-37 and MUC5AC mucin (a major mucin component of mucus) in airways of COPD patients and found a correlation between them. We showed in vitro that LL-37 induces MUC5AC mucin production by airway epithelial NCI-H292 cells in the absence and presence of cigarette smoke extract, with TNF-α converting enzyme (TACE)–EGFR–ERK1/2 pathway and IL-8 required for the induction. Therefore, we concluded that LL-37 enhances the mucus production in COPD airways, thus contributing to the progression of COPD.  相似文献   

14.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

15.
16.
17.
Hyperproduction of goblet cells and mucin in the airway epithelium is an important feature of airway inflammatory diseases. We investigated the involvement of Notch signaling in MUC5AC expression in NCI-H292 cells, a human lung carcinoma cell line. Epidermal growth factor (EGF) stimulated generation of the Notch intracellular domain (NICD) in a RBP-Jκ-dependent manner. Treatment with γ-secretase inhibitors L-685,458 or DAPT or introduction of small interfering RNA directed against Notch1 reduced EGF-induced MUC5AC expression. The inhibitory effect of L-685,458 on EGF-induced MUC5AC mRNA and protein expression was also observed in primary human bronchial epithelial cells. Blockage of Notch signaling with L-685,458 or Notch siRNA resulted in a decrease in EGF-induced phosphorylation of ERK. These results suggested that ERK activation is necessary for the regulation of EGF receptor (EGFR)-mediated MUC5AC expression by Notch signaling. Conversely, forced expression of NICD induced both EGFR and ERK phosphorylation with MUC5AC expression even in the absence of EGF. Treatment of the NICD-expressing cells with EGF further augmented ERK phosphorylation in an additive manner. The ERK phosphorylation induced by exogenous NICD was inhibited by treatment with an Ab that antagonizes EGFR activity as well as by inhibitors of EGFR and ERK, implying that Notch signaling induces MUC5AC expression by activating the EGFR pathway. Collectively, these results suggest that MUC5AC expression is regulated by a bidirectional circuit between Notch and EGFR signaling pathways.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号