首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal lipid metabolism contributes to the renal lipid accumulation, which is associated with diabetic kidney disease, but its precise mechanism remains unclear. The growing evidence demonstrates that thioredoxin-interacting protein is involved in regulating cellular glucose and lipid metabolism. Here, we investigated the effects of thioredoxin-interacting protein on lipid accumulation in diabetic kidney disease. In contrast to the diabetic wild-type mice, the physical and biochemical parameters were improved in the diabetic thioredoxin-interacting protein knockout mice. The increased renal lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, and phosphorylated Akt and mTOR associated with diabetes in wild-type mice was attenuated in diabetic thioredoxin-interacting protein knockout mice. Furthermore, thioredoxin-interacting protein knockout significantly increased the expression of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 in diabetic kidneys. In vitro experiments, using HK-2 cells, revealed that knockdown of thioredoxin-interacting protein inhibited high glucose-mediated lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, as well as activation of Akt and mTOR. Moreover, knockdown of thioredoxin-interacting protein reversed high glucose-induced reduction of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 expression in HK-2 cells. Importantly, blockade of Akt/mTOR signaling pathway with LY294002, a specific PI3K inhibitor, replicated these effects of thioredoxin-interacting protein silencing. Taken together, these data suggest that thioredoxin-interacting protein deficiency alleviates diabetic renal lipid accumulation through regulation of Akt/mTOR pathway, thioredoxin-interacting protein may be a potential therapeutic target for diabetic kidney disease.  相似文献   

2.
Phosphatase and tensin homology deleted on chromosome ten (PTEN) is a negative regulator of PI3K/Akt pathway, and here we investigated the effect of PTEN on lipogenesis in diabetic rats and high glucose-stimulated human renal proximal tubular cell line (HKC). Decreased PTEN and increased phospho-Akt were found in kidney of diabetic rats, and in vitro research revealed that high glucose attenuated PTEN expression in a time-dependent manner, concomitant with activation of Akt. Again, expression of PTEN significantly inhibited high glucose-caused increased phospho-Akt and lipogenic genes including SREBP-1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Furthermore, we confirmed inhibition of TGF-β1 pathway with SB431542 blocked the effect of high glucose on PTEN down-regulation, an increase in phospho-Akt and lipogenesis. These above data suggest that decreased PTEN mediates high glucose-induced lipogenesis in renal proximal tubular cells and TGF-β1 might be involved in PTEN down-regulation.  相似文献   

3.
The mechanistic target of rapamycin is a protein kinase that, as part of the mechanistic target of rapamycin complex 1 (mTORC1), senses both local nutrients and, through insulin signalling, systemic nutrients to control a myriad of cellular processes. Although roles for mTORC1 in promoting protein synthesis and inhibiting autophagy in response to nutrients have been well established, it is emerging as a central regulator of lipid homeostasis. Here, we discuss the growing genetic and pharmacological evidence demonstrating the functional importance of its signalling in controlling mammalian lipid metabolism, including lipid synthesis, oxidation, transport, storage and lipolysis, as well as adipocyte differentiation and function. Defining the role of mTORC1 signalling in these metabolic processes is crucial to understanding the pathophysiology of obesity and its relationship to complex diseases, including diabetes and cancer.  相似文献   

4.
5.
Spexin (SPX, NPQ) is a novel peptide involved in the regulation of energy metabolism. SPX inhibits food intake and reduces body weight. In obese humans, SPX is the most down-regulated gene in fat. Therefore, SPX might be involved in the regulation of lipid metabolism. Here, we study the effects of SPX on lipolysis, lipogenesis, glucose uptake, adipogenesis, cell proliferation and survival in isolated human adipocytes or murine 3T3-L1 cells. SPX and its receptors, GALR2 and GALR3, are present at mRNA and protein levels in murine 3T3-L1 cells and human adipocytes. SPX inhibits adipogenesis and down-regulates mRNA expression of proadipogenic genes such as Pparγ, C/ebpα, C/ebpβ and Fabp4. SPX stimulates lipolysis by increasing the phosphorylation of hormone sensitive lipase (HSL). Simultaneously, SPX inhibits lipogenesis and glucose uptake in human adipocytes and murine 3T3-L1 cells. SPX has no effect on murine 3T3-L1 cell proliferation and viability. Moreover, our research showed that the SPX effect on adipocytes metabolism is mediated via GALR2 and GALR3 receptors. SPX is a novel regulator of lipid metabolism in murine 3T3-L1 and human adipocytes.  相似文献   

6.
The mechanistic target of rapamycin (mTOR) signaling pathway regulates many metabolic and physiological processes in different organs or tissues. Dysregulation of mTOR signaling has been implicated in many human diseases including obesity, diabetes, cancer, fatty liver diseases, and neuronal disorders. Here we review recent progress in understanding how mTORC1 (mTOR complex 1) signaling regulates lipid metabolism in the liver.  相似文献   

7.
Hyperglycemia induces a wide array of signaling pathways in the kidney that lead to hypertrophy and matrix expansion, eventually culminating in progressive kidney failure. High glucose-induced reduction of the tumor suppressor protein phosphatase and tensin homolog deleted in chromosome 10 (PTEN) contributes to renal cell hypertrophy and matrix expansion. We identified microRNA-21 (miR-21) as the molecular link between high glucose and PTEN suppression. Renal cortices from OVE26 type 1 diabetic mice showed significantly elevated levels of miR-21 associated with reduced PTEN and increased fibronectin content. In renal mesangial cells, high glucose increased the expression of miR-21, which targeted the 3'-UTR of PTEN mRNA to inhibit PTEN protein expression. Overexpression of miR-21 mimicked the action of high glucose, which included a reduction in PTEN expression and a concomitant increase in Akt phosphorylation. In contrast, expression of miR-21 Sponge, to inhibit endogenous miR-21, prevented down-regulation of PTEN and phosphorylation of Akt induced by high glucose. Interestingly, high glucose-stimulated miR-21 inactivated PRAS40, a negative regulator of TORC1. Finally, miR-21 enhanced high glucose-induced TORC1 activity, resulting in renal cell hypertrophy and fibronectin expression. Thus, our results identify a previously unrecognized function of miR-21 that is the reciprocal regulation of PTEN levels and Akt/TORC1 activity that mediate critical pathologic features of diabetic kidney disease.  相似文献   

8.
9.
Prior work in the CCN field, including our own, suggested to us that there might be co-regulatory activity and function as part of the actions of this family of cysteine rich cytokines. CCN2 is now regarded as a major pro-fibrotic molecule acting both down-stream and independent of TGF-β1, and appears causal in the disease afflicting multiple organs. Since diabetic renal fibrosis is a common complication of diabetes, and a major cause of end stage renal disease (ESRD), we examined the possibility that CCN3 (NOV), might act as an endogenous negative regulator of CCN2 with the capacity to limit the overproduction of extracellular matrix (ECM), and thus prevent, or ameliorate fibrosis. We demonstrate, using an in vitro model of diabetic renal fibrosis, that both exogenous treatment with CCN3 and transfection with the over-expression of the CCN3 gene in mesangial cells markedly down-regulates CCN2 activity and blocks ECM over-accumulation stimulated by TGF-β1. Conversely, TGF-β1 treatment reduces endogenous CCN3 expression and increases CCN2 activity and matrix accumulation, indicating an important, novel yin/yang effect. Using the db/db mouse model of diabetic nephropathy, we confirm the expression of CCN3 in the kidney, with temporal localization that supports these in vitro findings. In summary, the results corroborate our hypothesis that one function of CCN3 is to regulate CCN2 activity and at the concentrations and conditions used down-regulates the effects of TGF-β1, acting to limit ECM turnover and fibrosis in vivo. The findings suggest opportunities for novel endogenous-based therapy either by the administration, or the upregulation of CCN3.  相似文献   

10.
Diabetic renal disease is associated with lipid deposits in the kidney. The purpose of our study was to determine whether there is altered regulation of the sterol regulatory element-binding proteins (SREBPs) in the diabetic kidney and whether SREBPs mediate the abnormal renal lipid metabolism and diabetic renal disease. In streptozotocin-induced diabetes in the rat, there were marked increases in SREBP-1 and fatty acid synthase (FAS) expression, resulting in increased triglyceride (TG) accumulation. Treatment of diabetic rats with insulin prevented the increased renal expression of SREBP-1 and the accumulation of TG. The role of hyperglycemia in the up-regulation of SREBP-1 was confirmed in renal cells cultured in a high glucose media. High glucose induced increased expression of SREBP-1a and -1c mRNA, SREBP-1 protein, and FAS, resulting in increased TG content. To determine a direct role for SREBP in mediating the increase in renal lipids and glomerulosclerosis, we studied SREBP-1a transgenic mice with increased renal expression of SREBP-1. The increase in SREBP-1 was associated with increased expression of FAS and acetyl CoA carboxylase, resulting in increased TG content, increased expression of transforming growth factor beta1 and vascular endothelial growth factor, mesangial expansion, glomerulosclerosis, and proteinuria. Our study therefore indicates that renal SREBP-1 expression is increased in diabetes and that SREBP-1 plays an important role in the increased lipid synthesis, TG accumulation, mesangial expansion, glomerulosclerosis, and proteinuria by increasing the expression of transforming growth factor beta and vascular endothelial growth factor.  相似文献   

11.
Oleoyl-estrone (OE) elicits a decrease in body fat, which is blocked by glucocorticoids. In order to analyze this counterregulatory effect, we studied the effects of oral OE on adrenalectomized female rats simultaneously receiving corticosterone (subcutaneous pellets). Circulating corticosteroids, liver glycogen, lipids and the expressions in whole liver, soleus muscle, interscapular brown adipose tissue (BAT), and the inguinal and periovaric white adipose tissue (WAT) of genes controlling lipid metabolism were analyzed. Corticosterone reversed OE lipid mobilization, storing fat in liver and subcutaneous WAT. This was not simply the predominance of corticosteroid enhancement of lipogenesis against OE inhibition, but a synergy to enhance lipogenesis. Periovaric WAT showed a different effect, with corticosterone inhibiting OE arrest of lipogenic gene expressions. The data presented suggests that interaction of OE and glucocorticoids (and the metabolic response) depends on the organ or WAT site; there was a direct relationship on the direction and extent of change of SREBP1c expression with those of important energy and lipid handling genes. Our results confirm that corticosterone blocks – and even reverses – OE effects on body lipids in a dose-dependent way, a process mediated, at least in part, by modulation of SREBP1c expression.  相似文献   

12.
Human epidemiological and animal studies have shown the beneficial effect of zinc supplementation on mitigating diabetic nephropathy. However, the mechanism by which zinc protects the kidney from diabetes remains unknown. Here we demonstrate the therapeutic effects of zinc on diabetes-induced renal pathological and functional changes. These abnormalities were found in both transgenic OVE26 and Akt2-KO diabetic mouse models, accompanied by significant changes in glucose-metabolism-related regulators. The changes included significantly decreased phosphorylation of Akt and GSK-3β, increased phosphorylation of renal glycogen synthase, decreased expression of hexokinase II and PGC-1α, and increased expression of the Akt negative regulators PTEN, PTP1B, and TRB3. All of these were significantly prevented by zinc treatment for 3 months. Furthermore, zinc-stimulated changes in glucose metabolism mediated by Akt were actually found to be metallothionein dependent, but not Akt2 dependent. These results suggest that the therapeutic effects of zinc in diabetic nephropathy are mediated, in part, by the preservation of glucose-metabolism-related pathways via the prevention of diabetes-induced upregulation of Akt negative regulators. Given that zinc deficiency is very common in diabetics, this finding implies that regularly monitoring zinc levels in diabetic patients, as well as supplementing if low, is important in mitigating the development of diabetic nephropathy.  相似文献   

13.
The increasing prevalence of overnutrition and reduced activity has led to a worldwide epidemic of obesity. In many cases, this is associated with insulin resistance, an inability of the hormone to direct its physiological actions appropriately. A number of disease states accompany insulin resistance such as type 2 diabetes mellitus, the metabolic syndrome, and non-alcoholic fatty liver disease. Though the pathways by which insulin controls hepatic glucose output have been of intense study in recent years, considerably less attention has been devoted to how lipid metabolism is regulated. Thus, both the proximal signaling pathways as well as the more distal targets of insulin remain uncertain. In this review, we consider the signaling pathways by which insulin controls the synthesis and accumulation of lipids in the mammalian liver and, in particular, how this might lead to abnormal triglyceride deposition in liver during insulin-resistant states.  相似文献   

14.
NVP-BEZ235 is a new inhibitor of phosphoinositol-3-kinase (PI3 kinase) and mammalian target of rapamycin (mTOR) whose efficacy in advanced solid tumours is currently being evaluated in a phase I/II clinical trial. Here we show that NVP-BEZ235 inhibits growth in common myeloma cell lines as well as primary myeloma cells at nanomolar concentrations in a time and dose dependent fashion. Further experiments revealed induction of apoptosis in three of four cell lines. Inhibition of cell growth was mainly due to inhibition of myeloma cell proliferation, as shown by the BrdU assay. Cell cycle analysis revealed induction of cell cycle arrest in the G1 phase, which was due to downregulation of cyclin D1, pRb and cdc25a. NVP-BEZ235 inhibited phosphorylation of protein kinase B (Akt), P70S6k and 4E-BP-1. Furthermore we show that the stimulatory effect of CD40-ligand (CD40L), insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6) and conditioned medium of HS-5 stromal cells on myeloma cell growth is completely abrogated by NVP-BEZ235. In addition, synergism studies revealed synergistic and additive activity of NVP-BEZ235 together with melphalan, doxorubicin and bortezomib. Taken together, inhibition of PI3 kinase/mTOR by NVP-BEZ235 is highly effective and NVP-BEZ235 represents a potential new candidate for targeted therapy in multiple myeloma.  相似文献   

15.
Comment on: Soliman GA, et al. Lipids 2010; 45:1089-100.  相似文献   

16.
Adipose tissue (AT) is a key organ in the regulation of total body lipid homeostasis, which is responsible for the storage and release of fatty acids according to metabolic needs. We aimed to investigate the effect of the quantity and quality of dietary fat on the lipogenesis and lipolysis processes in the AT of metabolic syndrome (MetS) patients. A randomized, controlled trial conducted within the LIPGENE study assigned MetS patients to one of four diets: (a) high-saturated fatty acid (HSFA) (b) high-monounsaturated fatty acid, and (c, d) two low-fat, high-complex carbohydrate diets supplemented with long chain (LC) n-3 (LFHCC n-3) polyunsaturated fatty acids (PUFA) or placebo (LFHCC), for 12 weeks each. A fat challenge reflecting the same fatty acid composition as the original diets was conducted post-intervention. Long-term consumption of the LFHCC diet induced an increase in the fasting expression levels of the sterol regulatory element binding protein-1 and stearoyl-CoA desaturase D9-desaturase genes, whereas the supplementation of this diet with n-3 PUFA reversed this effect (p = 0.007). In contrast, long-term consumption of the HSFA diet increased the expression of the adipose triglyceride lipase (ATGL) gene, at both fasting and postprandial states (both, p < 0.001). Our results showed the anti-lipogenic effect exerted by LC n-3 PUFA when administered together with a LFHCC diet. Conversely, a diet high in saturated fat increased the expression of the lipolytic gene ATGL relative to the other diets.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0409-3) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
胰高血糖素样肽1受体--治疗糖尿病新药的研究热点   总被引:5,自引:0,他引:5  
胰高血糖素样肽l(glucagon—like peptide—l,GLP-1)与胰岛素分泌和糖代谢调节密切相关。GLP-1与其受体(GLP-1receptor,GLP-1R)结合后,主要通过cAMP和P13K两条信号途径,促进胰岛素的分泌,刺激胰岛β细胞的增殖和分化。对GLP-1R结构和信号传导机制的研究,有助于了解其在糖尿病病理进程中的作用,为开发新型糖尿病治疗药物指明方向。  相似文献   

19.
G蛋白偶联受体119(GPR119)与激动剂结合后,通过cAMP信号转导途径,促进葡萄糖依赖性胰岛素和肠肽激素的分泌,是新一代的治疗2型糖尿病药物靶点。本文对GPR119的组织学分布、生理学作用、内源性配体以及小分子激动剂作一简要的介绍。  相似文献   

20.
To understand the relationship between epidermal growth factor receptor (EGFR) and axon regeneration and the mechanisms of how EGFR regulates the neuronal intrinsic regenerative ability, we evaluated the levels of mRNA and protein of EGFR、total mammalian target of rapamycin (mTOR), p‐mTORSer2448, total Akt and p‐AktSer473 in rats of different developmental stage by using Western blot and real‐time polymerase chain reaction analysis. Axon protein tau and neuron proteins β‐tubulin/neurofilament (NF) were assessed to evaluate the extent of the axon regeneration in cultured neuron cells. Expressions of EGFR、total mTOR, p‐mTORSer2448, total Akt and p‐AktSer473 in cultured neuron cells were also detected using Western blot analysis. Our results showed that the expressions of EGFR and mTOR dropped off with the ageing of the rats, and Ser473 phosphorylation of Akt and Ser2448 phosphorylation of mTOR were highly expressed in foetal and newborn rats but decreased obviously in adult rats. tau, β‐tubulin and NF were upregulated when EGFR was overexpressed and down‐regulated after EGFR was blocked. The phosphorylation of mTOR and Akt was apparently elevated when EGFR was overexpressed and decreased when EGFR was blocked, which suggested that EGFR has the potential to regulate the neuronal intrinsic regeneration and mTOR and PI3K/Akt pathway activation may have an important role in it. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号