首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A “HFPK3” peptide containing the 23 residues of the human immunodeficiency virus (HIV) fusion peptide (HFP) plus three non-native C-terminal lysines was studied in dodecylphosphocholine (DPC) micelles with 2D 1H NMR spectroscopy. The HFP is at the N-terminus of the gp41 fusion protein and plays an important role in fusing viral and target cell membranes which is a critical step in viral infection. Unlike HFP, HFPK3 is monomeric in detergent-free buffered aqueous solution which may be a useful property for functional and structural studies. Hα chemical shifts indicated that DPC-associated HFPK3 was predominantly helical from I4 to L12. In addition to the highest-intensity crosspeaks used for the first chemical shift assignment (denoted I), there were additional crosspeaks whose intensities were ∼ 10% of those used for assignment I. A second assignment (II) for residues G5 to L12 as well as a few other residues was derived from these lower-intensity crosspeaks. Relative to the I shifts, the II shifts were different by 0.01-0.23 ppm with the largest differences observed for HN. Comparison of the shifts of DPC-associated HFPK3 with those of detergent-associated HFP and HFP derivatives provided information about peptide structures and locations in micelles.  相似文献   

2.
The membrane-proximal segment connecting the helical core with the transmembrane anchor of human immunodeficiency virus type 1 gp41 is accessible to broadly neutralizing antibodies and plays a crucial role in fusion activity. New predictive approaches including computation of interfacial affinity and the corresponding hydrophobic moments suggest that this region is functionally segmented into two consecutive subdomains: one amphipathic at the N-terminal side and one fully interfacial at the C-terminus. The N-terminal subdomain would extend alpha-helices from the preceding carboxy-terminal heptad repeat and provide, at the same time, a hydrophobic-at-interface surface. Experiments were performed to compare a wild-type representing pretransmembrane peptide with a nonamphipathic defective sequence, which otherwise conserved interfacial hydrophobicity at the carboxy-subdomain. Results confirmed that both penetrated equally well into lipid monolayers and both were able to partition into membrane interfaces. However only the functional sequence: 1), adopted helical structures in solution and in membranes; 2), formed homo-oligomers in solution and membranes; and 3), inhibited gp41-induced cell-cell fusion. These data support two roles for gp41 aromatic-rich pretransmembrane sequence: 1), oligomerization of gp41; and 2), immersion into the viral membrane interface. Accessibility to membrane interfaces and subsequent adoption of the low-energy structure may augment helical bundle formation and perhaps be related to a concomitant loss of immunoreactivity. These results may have implications in the development of HIV-1 fusion inhibitors and vaccines.  相似文献   

3.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

4.
We have produced a small antimicrobial peptide PFWRIRIRR in bacteria utilizing production in the form of insoluble fusion protein with ketosteroid isomerase. The recombinant peptide was rapidly and efficiently isolated by acidic cleavage of the fusion protein based on the acid labile Asp-Pro bond at the N-terminus of the peptide. The peptide has antibacterial activity and neutralizes macrophage activation by LPS. The selectivity of the peptide against bacteria correlates with preferential binding to acidic phospholipid vesicles. Solution structure of the peptide in SDS and DPC micelles was determined by NMR. The peptide adopts a well-defined structure, comprising a short helical segment. Cationic and hydrophobic clusters are segregated along the molecular axis of the short helix, which is positioned perpendicular to the membrane plane. The position of the helix is shifted in two micellar types and more nonpolar surface is exposed in anionic micelles. Overall structure explains the advantageous role of the N-terminal proline residue, which forms an integral part of the hydrophobic cluster.  相似文献   

5.
Here, we predicted the minimal N-terminal fragment of gp41 required to induce significant membrane destabilization using IMPALA. This algorithm is dedicated to predict peptide interaction with a membrane. We based our prediction of the minimal fusion peptide on the tilted peptide theory. This theory proposes that some protein fragments having a peculiar distribution of hydrophobicity adopt a tilted orientation at a hydrophobic/hydrophilic interface. As a result of this orientation, tilted peptides should disrupt the interface. We analysed in silico the membrane-interacting properties of gp41 N-terminal peptides of different length derived from the isolate BRU and from an alignment of 710 HIV strains available on the Los Alamos National Laboratory. Molecular modelling results indicated that the 12 residue long peptide should be the minimal fusion peptide. We then assayed lipid-mixing and leakage of T-cell-like liposomes with N-terminal peptides of different length as first challenge of our predictions. Experimental results confirmed that the 12 residue long peptide is necessary and sufficient to induce membrane destabilization to the same extent as the 23 residue long fusion peptide. In silico analysis of some fusion-incompetent mutants presented in the literature further revealed that they cannot insert into a modelled membrane correctly tilted. According to this work, the tilted peptide model appears to explain at least partly the membrane destabilization properties of HIV fusion peptide.  相似文献   

6.
The HIV gp41 protein mediates fusion with target host cells. The region primarily involved in directing fusion, the fusion peptide (FP), is poorly understood at the level of structure and function due to its toxic effect in expression systems. To overcome this, we used a synthetic approach to generate the N70 construct, whereby the FP is stabilized in context of the adjacent auto oligomerization domain. The amide I profile of unlabeled N70 in membranes reveals prominent alpha-helical contribution, along with significant beta-structure. By truncating the N terminus (FP region) of N70, beta-structure is eliminated, suggesting that the FP adopts a beta-structure in membranes. To assess this directly, (13)C Fourier-transformed infra-red analysis was carried out to map secondary structure of the 16 N-terminal hydrophobic residues of the fusion peptide (FP16). The (13)C isotope shifted absorbance of the FP was filtered from the global secondary structure of the 70 residue construct (N70). On the basis of the peak shift induced by the (13)C-labeled residues of FP16, we directly assign beta-sheet structure in ordered membranes. A differential labeling scheme in FP16 allows us to distinguish the type of beta-sheet structure as parallel. Dilution of each FP16-labeled N70 peptide, by mixing with unlabeled N70, shows directly that the FP16 beta-strand region self-assembles. We discuss our structural findings in the context of the prevailing gp41 fusion paradigm. Specifically, we address the role of the FP region in organizing supramolecular gp41 assembly, and we also discuss the mechanism by which exogenous, free FP constructs inhibit gp41-induced fusion.  相似文献   

7.
The influenza fusion peptide located at the N‐terminus of the hemagglutinin HA2 subunit initiates the fusing process of the viral membrane with the host cell endosomal membrane. It had been reported that the structure of a 20‐residue H3 subtype fusion peptide (H3‐HAfp20) was significantly different with that of a H1 subtype 23‐residue one (H1‐HAfp23). The sequential difference between the 12th and 15th residues of H1 and H3 subtypes could not fully explain the conformational variation. The first and last three amino acids of H3‐HAfp23 involved in formation of hydrogen bonds may play an important role in fusion process. To confirm this hypothesis, we investigate the structures of H3‐HAfp23 peptide and its mutants, G1S and G1V, in dodecylphosphatidyl choline micelles by using heteronuclear NMR technology. The results demonstrate that, similar to H1‐HAfp23 but significantly different with H3‐HAfp20, H3‐HAfp23 also has tight helical hairpin structure with the N‐ and C‐terminuses linked together because of the hydrogen bonds between Gly1 and the last three amino acids, Trp21―Tyr22―Gly23. Although the ‘hemifusion’ G1S and lethal G1V mutants have hairpin‐like helical structures, the distances between the N‐ and C‐terminuses are increased as shortage of the hydrogen bonds and the larger kink angle between the antiparallel helices. The paramagnetic ion titration experiments show that the terminuses are inserted into the dodecylphosphatidyl choline micelles used as solving media. These may imply that the tight helical hairpin structure, especially the closed conformation at terminus, plays an important role in fusion activity. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The treatment of helical objects as a string of single particles has become an established technique to resolve their three-dimensional (3D) structure using electron cryo-microscopy. It can be applied to a wide range of helical particles such as viruses, microtubules and helical filaments. We have made improvements to this approach using Tobacco Mosaic Virus (TMV) as a test specimen and obtained a map from 210,000 asymmetric units at a resolution better than 5 A. This was made possible by performing a full correction of the contrast transfer function of the microscope. Alignment of helical segments was helped by constraints derived from the helical symmetry of the virus. Furthermore, symmetrization was implemented by multiple inclusions of symmetry-related views in the 3D reconstruction. We used the density map to build an atomic model of TMV. The model was refined using a real-space refinement strategy that accommodates multiple conformers. The atomic model shows significant deviations from the deposited model for the helical form of TMV at the lower-radius region (residues 88 to 109). This region appears more ordered with well-defined secondary structure, compared with the earlier helical structure. The RNA phosphate backbone is sandwiched between two arginine side-chains, stabilizing the interaction between RNA and coat protein. A cluster of two or three carboxylates is buried in a hydrophobic environment isolating it from neighboring subunits. These carboxylates may represent the so-called Caspar carboxylates that form a metastable switch for viral disassembly. Overall, the observed differences suggest that the new model represents a different, more stable state of the virus, compared with the earlier published model.  相似文献   

9.
Various fusion proteins from eukaryotes and viruses share structural similarities such as a coiled coil motif. However, compared with eukaryotic proteins, a viral fusion protein contains a fusion peptide (FP), which is an N-terminal hydrophobic fragment that is primarily involved in directing fusion via anchoring the protein to the target cell membrane. In various eukaryotic fusion proteins the membrane targeting domain is cysteine-rich and must undergo palmitoylation prior to the fusion process. Here we examined whether fatty acids can replace the FP of human immunodeficiency virus type 1 (HIV-1), thereby discerning between the contributions of the sequence versus hydrophobicity of the FP in the lipid-merging process. For that purpose, we structurally and functionally characterized peptides derived from the N terminus of HIV fusion protein - gp41 in which the FP is lacking or replaced by fatty acids. We found that fatty acid conjugation dramatically enhanced the capability of the peptides to induce lipid mixing and aggregation of zwitterionic phospholipids composing the outer leaflet of eukaryotic cell membranes. The enhanced effect of the acylated peptides on membranes was further supported by real-time atomic force microscopy (AFM) showing nanoscale holes in zwitterionic membranes. Membrane-binding experiments revealed that fatty acid conjugation did not increase the affinity of the peptides to the membrane significantly. Furthermore, all free and acylated peptides exhibited similar α-helical structures in solution and in zwitterionic membranes. Interestingly, the fusogenic active conformation of N36 in negatively charged membranes composing the inner leaflet of eukaryotic cells is β-sheet. Apparently, N-terminal heptad repeat (NHR) can change its conformation as a response to a change in the charge of the membrane head group. Overall, the data suggest an analogy between the eukaryotic cysteine-rich domains and the viral fusion peptide, and mark the hydrophobic nature of FP as an important characteristic for its role in lipid merging.  相似文献   

10.
Cell-penetrating peptides (CPPs) are an attractive tool for delivering membrane-impermeable compounds, including anionic biomacromolecules such as DNA and RNA, into living cells. Amphipathic helical peptides composed of hydrophobic amino acids and cationic amino acids are typical CPPs. In the current study, we designed amphipathic helical 12-mer peptides containing α,α-disubstituted α-amino acids (dAAs), which are known to stabilize peptide secondary structures. The dominant secondary structures of peptides in aqueous solution differed according to the introduced dAAs. Peptides containing hydrophobic dAAs and adopting a helical structure exhibited a good cell-penetrating ability. As an application of amphipathic helical peptides, small interfering RNA (siRNA) delivery into living human hepatoma cells was investigated. One of the peptides containing dAAs dipropylglycine formed stable complexes with siRNA at appropriate zeta-potential and size for intracellular siRNA delivery. This peptide showed effective RNA interference efficiency at short peptide length and low concentrations of peptide and siRNA. These findings will be helpful for the design of amphipathic helical CPPs as intracellular siRNA delivery.  相似文献   

11.
Severe acute respiratory coronavirus (SARS-CoV) spike (S) glycoprotein fusion core consists of a six-helix bundle with the three C-terminal heptad repeat (HR2) helices packed against a central coiled-coil of the other three N-terminal heptad repeat (HR1) helices. Each of the three peripheral HR2 helices shows prominent contacts with the hydrophobic surface of the central HR1 coiled-coil. The concerted protein-protein interactions among the HR helices are responsible for the fusion event that leads to the release of the SARS-CoV nucleocapsid into the target host-cell. In this investigation, we applied recombinant protein and synthetic peptide-based biophysical assays to characterize the biological activities of the HR helices. In a parallel experiment, we employed a HIV-luc/SARS pseudotyped virus entry inhibition assay to screen for potent inhibitory activities on HR peptides derived from the SARS-CoV S protein HR regions and a series of other small-molecule drugs. Three HR peptides and five small-molecule drugs were identified as potential inhibitors. ADS-J1, which has been used to interfere with the fusogenesis of HIV-1 onto CD4+ cells, demonstrated the highest HIV-luc/SARS pseudotyped virus-entry inhibition activity among the other small-molecule drugs. Molecular modeling analysis suggested that ADS-J1 may bind to the deep pocket of the hydrophobic groove on the surface of the central coiled-coil of SARS-CoV S HR protein and prevent the entrance of the SARS-CoV into the host cells.  相似文献   

12.
We have simulated two conformations of the fusion domain of influenza hemagglutinin (HA) within explicit water, salt, and heterogeneous lipid bilayers composed of POPC:POPG (4:1). Each conformation has seven different starting points in which the initial peptide structure is the same for each conformation, but the location across the membrane normal and lipid arrangement around the peptide are varied, giving a combined total simulation time of 140 ns. For the HA5 conformation (primary structure from recent NMR spectroscopy at pH = 5), the peptide exhibits a stable and less kinked structure in the lipid bilayer compared to that from the NMR studies. The relative fusogenic behavior of the different conformations has been investigated by calculation of the relative free energy of insertion into the hydrophobic region of lipid bilayer as a function of the depth of immersion. For the HA7 conformations (primary structure from recent NMR spectroscopy at pH = 7.4), while the N-terminal helix preserves its initial structure, the flexible C-terminal chain produces a transient helical motif inside the lipid bilayer. This conformational change is pH-independent, and is closely related to the peptide insertion into the lipid bilayer.  相似文献   

13.
Fusion proteins from a group of widely disparate viruses, including the paramyxovirus F protein, the HIV and SIV gp160 proteins, the retroviral Env protein, the Ebola virus Gp, and the influenza virus haemagglutinin, share a number of common features. All contain multiple glycosylation sites, and must be trimeric and undergo proteolytic cleavage to be fusogenically active. Subsequent to proteolytic cleavage, the subunit containing the transmembrane domain in each case has an extremely hydrophobic region, termed the fusion peptide, or at near its newly generated N-terminus. In addition, all of these viral fusion proteins have 4–3 heptad repeat sequences near both the fusion peptide and the transmembrane domain. These regions have been demonstrated from a tight complex, in which the N-terminal heptad repeat forms a trimeric-coiled coil, with the C-terminal heptad repeat forming helical regions that buttress the coiled-coil in an anti-parallel manner. The significance of each of these structuralelements in the processing and function of these viral fusion proteins is discussed.  相似文献   

14.
N-ethylmaleimide-sensitive factor (NSF) and α soluble NSF attachment proteins (α-SNAPs) work together within a 20S particle to disassemble and recycle the SNAP receptor (SNARE) complex after intracellular membrane fusion. To understand the disassembly mechanism of the SNARE complex by NSF and α-SNAP, we performed single-particle cryo-electron microscopy analysis of 20S particles and determined the structure of the α-SNAP-SNARE assembly portion at a resolution of 7.35 Å. The structure illustrates that four α-SNAPs wrap around the single left-handed SNARE helical bundle as a right-handed cylindrical assembly within a 20S particle. A conserved hydrophobic patch connecting helices 9 and 10 of each α-SNAP forms a chock protruding into the groove of the SNARE four-helix bundle. Biochemical studies proved that this structural element was critical for SNARE complex disassembly. Our study suggests how four α-SNAPs may coordinate with the NSF to tear the SNARE complex into individual proteins.  相似文献   

15.
The membrane-proximal stem region of gp41 has been postulated to host the two conserved membrane-transferring domains that promote HIV-1 fusion: the amino-terminal fusion peptide (FP) and the highly aromatic pre-transmembrane sequence. Our results confirm that the hydrophobic FP and membrane-proximal sequences come into contact and form structurally defined complexes. These complexes are immunogenic and evoke responses in rabbits that compete with the recognition of native functional gp41 by the 2F5 monoclonal antibody. We conclude that co-assembly of the FP and the pre-transmembrane sequences might exert a constraint that helps maintain a gp41 stem region pre-fusion structure.  相似文献   

16.
Upon receptor-mediated activation, the gp41 hydrophobic, conserved fusion peptide inserts into the target membrane and promotes the kind of perturbations required for the progression of the HIV-cell fusion reaction. Using a synthetic combinatorial library we have identified all d-amino acid hexapeptide sequences that inhibited the fusion peptide capacity of perturbing model membranes. Two hexapeptides that effectively inhibited the fusion peptide in these systems were subsequently shown to inhibit cell-cell fusion promoted by gp41 expressed at cell surfaces. These observations might be of importance for understanding the mechanisms underlying fusion peptide activity and suggest new strategies for screening compounds that target these viral sequences.  相似文献   

17.
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354–363 and 371–379 separated by a more flexible segment of residues 364–370. In LPPG micelles a helical conformation was observed for residues 354–377 with greater flexibility in the 366–367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.  相似文献   

18.
To enter cells, enveloped viruses use fusion-mediating glycoproteins to facilitate the merger of the viral and host cell membranes. These glycoproteins undergo large-scale irreversible refolding during membrane fusion. The paramyxovirus parainfluenza virus 5 mediates membrane merger through its fusion protein (F). The transmembrane (TM) domains of viral fusion proteins are typically required for fusion. The TM domain of F is particularly interesting in that it is potentially unusually long; multiple calculations suggest a TM helix length between 25 and 48 residues. Oxidative cross-linking of single-cysteine substitutions indicates the F TM trimer forms a helical bundle within the membrane. To assess the functional role of the paramyxovirus parainfluenza virus 5 F protein TM domain, alanine scanning mutagenesis was performed. Two residues located in the outer leaflet of the bilayer are critical for fusion. Multiple amino acid substitutions at these positions indicate the physical properties of the side chain play a critical role in supporting or blocking fusion. Analysis of intermediate steps in F protein refolding indicated that the mutants were not trapped at the open stalk intermediate or the prehairpin intermediate. Incorporation of a known F protein destabilizing mutation that causes a hyperfusogenic phenotype restored fusion activity to the mutants. Further, altering the curvature of the lipid bilayer by addition of oleic acid promoted fusion of the F protein mutants. In aggregate, these data indicate that the TM domain plays a functional role in fusion beyond merely anchoring the protein in the viral envelope and that it can affect the structures and steady-state concentrations of the various conformational intermediates en route to the final postfusion state. We suggest that the unusual length of this TM helix might allow it to serve as a template for formation of or specifically stabilize the lipid stalk intermediate in fusion.  相似文献   

19.
Colicins are toxic proteins produced by Escherichia coli that must cross the membrane to exert their activity. The lipid insertion of their pf domain is linked to a conformational change which enables the penetration of a hydrophobic hairpin. They provide useful models to more generally study insertion of proteins, channel formation and protein translocation in and across membranes. In this paper, we study the lipid-destabilizing properties of helices H8 and H9 forming the hydrophobic hairpin of colicin E1. Modelling analysis suggests that those fragments behave like tilted peptides. The latter are characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic interface (such as a lipid membrane) and to destabilize the organized system into which they insert. Fluorescence techniques using labelled liposomes clearly show that H9, and H8 to a lesser extent, destabilize lipid particles, by inducing fusion and leakage. AFM assays clearly indicate that H8 and especially H9 induce membrane fragilization. Holes in the membrane are even observed in the presence of H9. This behaviour is close to what is seen with viral fusion peptides. Those results suggest that the peptides could be involved in the toroidal pore formation of colicin E1, notably by disturbing the lipids and facilitating the insertion of the other, more hydrophilic, helices that will form the pore. Since tilted, lipid-destabilizing fragments are also common to membrane proteins and to signal sequences, we suggest that tilted peptides should have an ubiquitous role in the mechanism of insertion of proteins into membranes.  相似文献   

20.
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both extracellular and transmembrane (TM) glycoprotein domains contribute to this interaction, but study of TM–TM interactions has been limited because synthesis and structural characterization of these highly hydrophobic segments present significant challenges. In this NMR study, by successful expression and purification of the E2 transmembrane domain as a fusion construct we have determined the global fold and characterized backbone motions for this peptide incorporated in phospholipid micelles. Backbone resonance frequencies, relaxation rates and solvent exposure measurements concur in showing this domain to adopt a helical conformation, with two helical segments spanning residues 717–726 and 732–746 connected by an unstructured linker containing the charged residues D728 and R730 involved in E1 binding. Although this linker exhibits increased local motions on the ps timescale, the dominating contribution to its relaxation is the global tumbling motion with an estimated correlation time of 12.3 ns. The positioning of the helix–linker–helix architecture within the mixed micelle was established by paramagnetic NMR spectroscopy and phospholipid-peptide cross relaxation measurements. These indicate that while the helices traverse the hydrophobic interior of the micelle, the linker lies closer to the micelle perimeter to accommodate its charged residues. These results lay the groundwork for structure determination of the E1/E2 complex and a molecular understanding of glycoprotein heterodimerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号