首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Benzyl phosphonates were prepared and their potentialities as chromophoric reagents for the exploration of the substrate-binding site of Escherichia coli alkaline phosphatase were investigated. 4-Nitrobenzylphosphonate is a competitive inhibitor of the enzyme. 2-Hydroxy-5-nitrobenzylphosphonate changes its spectrum on binding to the enzyme. This spectral change is reversed when the phosphonate is displaced from the enzyme by substrate. 2. The kinetics of the reaction of 2-hydroxy-5-nitrophenylphosphonate were studied by the stopped-flow and the temperature-jump techniques. It was found that the combination of the phosphonate with the enzyme occurred in two successive and reversible steps: enzyme-phosphonate complex-formation followed by rearrangement of the complex. The spectral change is associated with the rearrangement. At pH8 in 1m-sodium chloride at 22 degrees the rate constant is 167sec.(-1) for the rearrangement of the initially formed binary complex and is 18sec.(-1) for the reverse process. 3. It has previously been proposed that the reactions of phosphatase with its substrates include a distinct step between enzyme-substrate combination and chemical catalysis. The rate constant involved could be predicted but not measured from experiments with substrates. The value for the rate constant measured from the rate of the enzyme-phosphonate rearrangement is in excellent agreement with the predicted value. A model for the reaction mechanism is proposed that includes a conformation change in response to phosphate ester binding before phosphate transfer from substrate to enzyme.  相似文献   

2.
Class II fructose 1,6-bisphosphate aldolases (FBP-aldolases) catalyse the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP). Analysis of the structure of the enzyme from Escherichia coli in complex with a transition state analogue (phosphoglycolohydroxamate, PGH) suggested that substrate binding caused a conformational change in the beta5-alpha7 loop of the enzyme and that this caused the relocation of two glutamate residues (Glu181 and Glu182) into the proximity of the active site. Site-directed mutagenesis of these two glutamate residues (E181A and E182A) along with another active site glutamate (Glu174) was carried out and the mutant enzymes characterised using steady-state kinetics. Mutation of Glu174 (E174A) resulted in an enzyme which was severely crippled in catalysis, in agreement with its position as a zinc ligand in the enzyme's structure. The E181A mutant showed the same properties as the wild-type enzyme indicating that the residue played no major role in substrate binding or enzyme catalysis. In contrast, mutation of Glu182 (E182A) demonstrated that Glu182 is important in the catalytic cycle of the enzyme. Furthermore, the measurement of deuterium kinetic isotope effects using [1(S)-(2)H]DHAP showed that, for the wild-type enzyme, proton abstraction was not the rate determining step, whereas in the case of the E182A mutant this step had become rate limiting, providing evidence for the role of Glu182 in abstraction of the C1 proton from DHAP in the condensation direction of the reaction. Glu182 lies in a loop of polypeptide which contains four glycine residues (Gly176, Gly179, Gly180 and Gly184) and a quadruple mutant (where each glycine was converted to alanine) showed that flexibility of this loop was important for the correct functioning of the enzyme, probably to change the microenvironment of Glu182 in order to perturb its pK(a) to a value suitable for its role in proton abstraction. These results highlight the need for further studies of the dynamics of the enzyme in order to fully understand the complexities of loop closure and catalysis in this enzyme.  相似文献   

3.
W H Ward  A R Fersht 《Biochemistry》1988,27(15):5525-5530
Tyrosyl-tRNA synthetase from Bacillus stearothermophilus is a classical example of an enzyme with half-of-the-sites activity. The enzyme crystallizes as a symmetrical dimer that is composed of identical subunits, each having a complete active site. In solution, however, tyrosyl-tRNA synthetase binds tightly, and activates rapidly, only 1 mol of Tyr/mol of dimer. It has recently been shown that the half-of-the-sites activity results from an inherent asymmetry of the enzyme. Only one subunit catalyzes formation of Tyr-AMP, and interchange of activity between subunits is not detectable over a long time scale. Paradoxically, however, the kinetics of tRNA charging are biphasic with respect to [Tyr], suggesting that both subunits of the dimer are catalytically active. This paradox has now been resolved by kinetic analysis of heterodimeric enzymes containing different mutations in each subunit. Biphasic kinetics with unchanged values of KM for Tyr are maintained when one of the two tRNA-binding domains is removed and also when the affinity of the "inactive" site for Try is reduced by 2-58-fold. The biphasic kinetics do not result from catalysis at both active sites, but instead appear to result from two molecules of Tyr binding sequentially to the same site. A second molecule of Tyr perhaps aids the dissociation of Tyr-tRNA by displacing the tyrosyl moiety from its binding site. A monomer of the enzyme is probably too small to allow both recognition and aminoacylation of a tRNA molecule. This could explain the requirement for the enzyme to function as an asymmetric dimer.  相似文献   

4.
Maize leaf phosphoenolpyruvate carboxylase was completely and irreversibly inactivated by treatment with micromolar concentrations of Woodward's reagentK (WRK) for about 1 min. The inactivation followed pseudo-first-order reaction kinetics. The order of reaction with respect to WRK showed that the reagent causes formation of reversible enzyme inhibitor complex before resulting in irreversible inactivation. The loss of activity was correlated to the modification of a single carboxyl group per subunit, even though the reagent reacted with 2 carboxyl groups per protomer. Substrate PEP and PEP + Mg2+ offered substantial protection against inactivation by WRK. The modified enzyme showed a characteristic absorbance at 346 nm due to carboxyl group modification. The modified enzyme exhibited altered surface charge as seen from the elution profile on FPLC Mono Q anion exchange column. The modified enzyme was desensitized to positive and negative effectors like glucose-6-phosphate and malate. Pretreatment of PEP carboxylase with diethylpyrocarbonate prevented WRK incorporation into the enzyme, suggesting that both histidine and carboxyl groups may be closely physically related. The carboxyl groups might be involved in metal binding during catalysis by the enzyme.  相似文献   

5.
The association between enzymatic and electrochemical reactions, enzymatic electrocatalysis, had proven to be a very powerful tooth in both analytical and synthetic fields. However, most of the combinations studied have involved enzymatic catalysis of irreversible or quasi-irreversible reaction. In the present work, we have investigated the possibility of applying enzymatic electrocatalysis to a case where the electrochemical reaction drives a thermodynamically unfavorable reversible reaction. Such thermodynamically unfavorable reactions include most of the oxidations catalyzed by dehydrogenases. Yeast alcohol dehydrogenase (E.C. 1.1.1.1) was chosen as a model enzyme because the oxidation of ethanol is thermodynamically very unfavorable and because its kinetics are well known. The electrochemical reaction was the oxidation of NADH which is particularly attractive as a method of cofactor regeneration. Both the electrochemical and enzymatic reactions occur in the same batch reactor in such a way that electrical energy is the only external driving force. Two cases were experimentally and theoretically developed with the enzyme either in solution or immobilized onto the electrode's surface. In both cases, the electrochemical reaction could drive the enzymatic reaction by NADH consumption in solution or directly in the enzyme's microenvironment. However even for a high efficiency of NADH consumption, the rate of enzymatic catalysis was limited by product (acetaldedehyde) inhibition. Extending this observation to the subject of organic synthesis catalyzed by dehydrogenases, we concluded that thermodynamically unfavorable reaction and can only be used in a process if efficient NAD regeneration and product elimination are simultaneously carried out within the reactor.  相似文献   

6.
Maize leaf phosphoenolpyruvate carboxylase was completely and irreversibly inactivated by treatment with micromolar concentrations of Woodward's reagentK (WRK) for about 1 min. The inactivation followed pseudo-first-order reaction kinetics. The order of reaction with respect to WRK showed that the reagent causes formation of reversible enzyme inhibitor complex before resulting in irreversible inactivation. The loss of activity was correlated to the modification of a single carboxyl group per subunit, even though the reagent reacted with 2 carboxyl groups per protomer. Substrate PEP and PEP + Mg2+ offered substantial protection against inactivation by WRK. The modified enzyme showed a characteristic absorbance at 346 nm due to carboxyl group modification. The modified enzyme exhibited altered surface charge as seen from the elution profile on FPLC Mono Q anion exchange column. The modified enzyme was desensitized to positive and negative effectors like glucose-6-phosphate and malate. Pretreatment of PEP carboxylase with diethylpyrocarbonate prevented WRK incorporation into the enzyme, suggesting that both histidine and carboxyl groups may be closely physically related. The carboxyl groups might be involved in metal binding during catalysis by the enzyme.  相似文献   

7.
The membrane-active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a critical role in cell signaling. This catalytic reaction proceeds on lipid-water interfaces and is an example of heterogeneous catalysis in biology. Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can be used for monitoring interfacial catalytic reactions under well-defined experimental conditions with chemical and electrical access to both sides of the lipid membrane. Employing an assay that relies on the conductance of the pore-forming peptide gramicidin A to monitor PLD activity, the work presented here reveals the kinetics of hydrolysis of long-chain phosphatidylcholine lipids in situ. We have developed an extension of a basic kinetic model for interfacial catalysis that includes product activation and substrate depletion. This model describes the kinetic behavior very well and reveals two kinetic parameters, the specificity constant and the interfacial quality constant. This approach results in a simple and general model to account for product accumulation in interfacial enzyme kinetics.  相似文献   

8.
The Briggs-Haldane approximation of the irreversible Michaelis-Menten scheme of enzyme kinetics is cited in virtually every biochemistry textbook and is widely considered the classic example of a quasi-steady-state approximation. Though of similar importance, the reversible Michaelis-Menten scheme is not as well characterized. This is a serious limitation since even enzymatic reactions that go to completion may be reversible. The current work derives a total quasi-steady-state approximation (tQSSA) for the reversible Michaelis-Menten and delineates its validity domain. The tQSSA allows the derivation of uniformly valid approximations for the limit of low enzyme concentrations, ET相似文献   

9.
Li B  Huang Y  Paskewitz SM 《FEBS letters》2006,580(7):1877-1882
We report a kinetics study on hen egg white lysozyme's (HEWL) inhibitory effect on mushroom tyrosinase catalysis of 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) or L-tyrosine. For the first time, we demonstrate HEWL as a robust inhibitor against mushroom tyrosinase in catalysis of both substrates. The kinetics pattern matches a mixed (mostly non-competitive) partial inhibition. Ki and ID50 value of HEWL are more than 20-fold lower than that of kojic acid, a well-known chemical inhibitor of mushroom tyrosinase. Ki, alpha value and beta value, are almost identical in both experiments (L-DOPA and L-tyrosine as substrates, respectively), which suggests this common inhibition mechanism affects both steps. The inhibitory effect increases as both proteins were mixed and pre-incubated for less than 1 h. HEWL-depletion only removed about half of the inhibitory effect. Here we propose a novel function of HEWL, which combines the reversible inhibition and the irreversible inactivation toward mushroom tyrosinase. Discovery of HEWL as an inhibitor to mushroom tyrosinase catalysis may be commercially valuable in the food, medical and cosmetic industries.  相似文献   

10.
Several cellular processes are regulated by interfacial catalysis on biomembrane surfaces. Phospholipases A(2) (PLA(2)) are interesting not only as prototypes for interfacial catalysis, but also because they mobilize precursors for the biosynthesis of eicosanoids and platelet activating factor, and these agents ultimately control a wide range of secretory and inflammatory processes. Since PLA(2) carry out their catalytic function at membrane surfaces, the kinetics of these enzymes depends on what the enzyme 'sees' at the interface, and thus the observed rate is profoundly influenced by the organization and dynamics of the lipidwater interface ('quality of the interface'). In this review we elaborate the advantages of monitoring interfacial catalysis in the scooting mode, that is, under the conditions where the enzyme remains bound to vesicles for several thousand catalytic turnover cycles. Such a highly processive catalytic turnover in the scooting mode is useful for a rigorous and quantitative characterization of the kinetics of interfacial catalysis. This analysis is now extended to provide insights into designing strategy for PLA(2) assays and screens for their inhibitors.  相似文献   

11.
Ensemble kinetics and single-molecule fluorescence microscopy were used to study conformational transitions associated with enzyme catalysis by dihydrofolate reductase (DHFR). The active site loop of DHFR was labeled with a fluorescence quencher, QSY35, at amino acid position 17, and the fluorescent probe, Alexa555, at amino acid 37, by introducing cysteines at these sites with site-specific mutagenesis. The distance between the probes was such that approximately 50% fluorescence resonance energy transfer (FRET) occurred. The double-labeled enzyme retained essentially full catalytic activity, and stopped-flow studies of both the forward and reverse reactions revealed that the distance between probes increased prior to hydride transfer. A fluctuation in fluorescence intensity of single molecules of DHFR was observed in an equilibrium mixture of substrates but not in their absence. Ensemble rate constants were derived from the distributions of lifetimes observed and attributed to a reversible conformational change. Studies were carried out with both NADPH and NADPD as substrates, with no measurable isotope effect. Similar studies with a G121V mutant DHFR resulted in smaller rate constants. This mutant DHFR has reduced catalytic activity, so that the collective data for the conformational change suggest that the conformational change being observed is associated with catalysis and probably represents a conformational change prior to hydride transfer. If the change in fluorescence is attributed to a change in FRET, the distance change associated with the conformational change is approximately 1-2 A. These results are correlated with other measurements related to conformation coupled catalysis.  相似文献   

12.
Alkaline phosphatase serves both as a model enzyme for studies on the mechanism and kinetics of phosphomonoesterases and as a reporter in enzyme-linked immunosorbent assays (ELISAs) and other biochemical methods. The tight binding of the enzyme to its inorganic phosphate product leads to strong inhibition of catalysis and confounds measurements of alkaline phosphatase activity. We have developed an alkaline phosphatase substrate in which the fluorescence of rhodamine is triggered on P–O bond cleavage in a process mediated by a “trimethyl lock.” Although this substrate requires a nonenzymatic second step to manifest fluorescence, we demonstrated that the enzymatic first step limits the rate of fluorogenesis. The substrate enables the catalytic activity of alkaline phosphatase to be measured with high sensitivity and accuracy. Its attributes are ideal for enzymatic assays of alkaline phosphatase for both basic research and biotechnological applications.  相似文献   

13.
Further evidence for time-dependent interconversions between active and inactive states of ribulose 1,5-bisphosphate carboxylase is presented. It was found that ribulose bisphosphate oxygenase and ribulose bisphosphate carboxylase could be totally inactivated by excluding CO2 and Mg2+ during dialysis of the enzyme at 4 degrees C. When initially inactive enzyme was assayed, the rate of reaction continually increased with time, and the rate was inversely related to the ribulose bisphosphare concentration. The initial rate of fully activated enzyme showed normal Michaelis-Menten kinetics with respect to ribulose bisphosphate (Km = 10muM). Activation was shown to depend on both CO2 and Mg2+ concentrations, with equilibrium constants for activation of about 100muM and 1 mM respectively. In contrast with activation, catalysis appeared to be independent of Mg2+ concentration, but dependent on CO2 concentration, with a Km(CO2) of about 10muM. By studying activation and de-activation of ribulose bisphosphate carboxylase as a function of CO2 and Mg2+ concentrations, the values of the kinetic constants for these actions have been determined. We propose a model for activation and catalysis of ribulose bisphosphate carboxylase: (see book) where E represents free inactive enzyme; complex in parentheses, activated enzyme; R, ribulose bisphosphate; M, Mg2+; C, CO2; P, the product. We propose that ribulose bisphosphate can bind to both the active and inactive forms of the enzyme, and slow inter-conversion between the two states occurs.  相似文献   

14.
1. The reversible NAD(+)-linked oxidation of d-3-hydroxybutyrate to acetoacetate in 0.1m-sodium pyrophosphate buffer, pH8.5, at 25.0 degrees C, catalysed by d-3-hydroxybutyrate dehydrogenase (d-3-hydroxybutyrate-NAD(+) oxidoreductase, EC 1.1.1.30), was studied by initial-velocity, dead-end inhibition and product-inhibition analysis. 2. The reactions were carried out on (a) the soluble enzyme from Rhodopseudomonas spheroides and (b) an insoluble derivative of this enzyme prepared by its covalent attachment to DEAE-cellulose by using 2-amino-4,6-dichloro-s-triazine as coupling agent. 3. The insolubilized enzyme preparation contained 5mg of protein/g wet wt. of total material, and when freshly prepared its specific activity was 1.2mumol/min per mg of protein, which is 67% of that of the soluble dialysed enzyme. 4. The reactions catalysed by both the enzyme in solution and the insolubilized enzyme were shown to follow sequential pathways in which the nicotinamide nucleotides bind obligatorily first to the enzyme. Evidence is presented for kinetically significant ternary complexes and that the rate-limiting step(s) of both catalyses probably involves isomerization of the enzyme-nicotinamide nucleotide complexes and/or dissociation of the nicotinamide nucleotides from the enzyme. Both catalyses therefore are probably best described as ordered Bi Bi mechanisms, possibly with multiple enzyme-nicotinamide nucleotide complexes. 5. The kinetic parameters and the calculable rate constants for the catalysis by the soluble enzyme are similar to the corresponding parameters and rate constants for the catalysis by the insolubilized enzyme.  相似文献   

15.
Two relatively simple procedures are described for the purification of phosphofructokinase from the extreme thermophile, Thermus X-1. The native enzyme has a molecular weight of 1.32 × 105 and contains four apparently identical polypeptide chains. One substrate, fructose-6-phosphate, induces a cooperative protein transition while the other substrate, ATP, does not. Phosphoenolpyruvate functions as an avid negative effector and ADP is a positive effector. The enzyme has an optimum temperature for catalysis of 80 °C. Persistence of the catalytic and allosteric properties over the temperature range 20–80 °C suggests that the same protein structure is retained throughout this temperature range. Thermus X-1 phosphofructokinase is more stable to inactivation by heat, urea, guanidine hydrochloride or acidification than the phosphofructokinases obtained from the mesophilic organisms Escherichia coli and Clostridium pasteurianum. Comparison of the amino acid compositions of the three enzymes indicates no substantive differences in their hydrophobicity, hydrogen bonding potential or average residue size. The markedly elevated optimum temperature for catalysis exhibited by the Thermus enzyme appears to result from stabilization of its catalytically functional conformational to a reversible thermal inactivation above 40 °C and to ligation of the substrate fructose-6-phosphate.  相似文献   

16.
3'-O-[5-azidonaphthoyl]-ADP has been synthesized as a photoreactive analog to 3'-O-naphthoyl(1)-ADP which is known to bind to the high-affinity nucleotide sites of mitochondrial F1-ATPase, considered to be the catalytic sites. The photolabel in the dark acts as a ligand to F1-ATPase and as a competitive inhibitor with Ki = 11 microM. Binding to the enzyme is accompanied by a quench of endogenous protein fluorescence leveling off at an occupancy of 1 mol/mol F1, whereas the total number of reversible sites accessible to the analog is 3 mol/mol F1 as measured by isotope studies. Covalent insertion by near ultraviolet activation of the probe yields labeling of both alpha and beta polypeptides of F1; it is accompanied by corresponding removal of reversible high-affinity sites for ADP or naphthoyl-ADP and by an inhibition of the enzyme; total inactivation occurs at a covalent occupancy of 2 mol/mol F1. This is the maximum number of sites accessible to covalent modification by the label; one reversible site is still available in the totally inactivated enzyme. This observation is discussed in terms of a stochastic model requiring a minimum of two interacting catalytic domains out of three in order to commence catalysis.  相似文献   

17.
Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coli AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in Km values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the kcat value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the biochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coli AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis.  相似文献   

18.
A calcium-activated potassium channel in posterior pituitary nerve terminals was modulated by phosphorylation and dephosphorylation. Nearly every patch of membrane containing this channel also contained both membrane bound protein phosphatase and membrane-bound protein kinase. By examining the statistical and kinetic nature of phosphorylation and dephosphorylation in excised patches, it was possible to evaluate two contrasting models for these enzymatic reactions. One of these models treated catalysis as an intermolecular process in which the enzyme and substrate are separate molecular species that diffuse and encounter one another during collisions. The second model treated catalysis as an intramolecular process in which the enzyme and substrate reside within a stable macromolecular complex. The study began with a Poisson analysis of the distribution of channel number in patches, and of the number of protein phosphatase-free and protein kinase-free patches. Subsequent kinetic analysis of dephosphorylation yielded an estimate of the mean number of protein phosphatase molecules per patch that was similar to the value obtained from Poisson analysis. Because these two estimates were independent predictions based on the intermolecular model, their agreement supported this model. Analysis of channel number in protein phosphatase-free patches and of the rarity of patches showing partial but incomplete rundown provided additional support for the intermolecular model over the intramolecular model. Furthermore, dephosphorylation exhibited monotonic kinetics with a rate well below the diffusion limit. Thus, several different lines of analysis support the intermolecular model for dephosphorylation, in which the protein phosphatase must encounter its substrate to effect catalysis. In contrast to the monotonic kinetics of dephosphorylation, the phosphorylation reaction exhibited sigmoidal kinetics, with a rate that depended on membrane potential. Voltage dependence is an unlikely property for a kinetic step involving encounters resulting from diffusion. Furthermore, the velocity of the phosphorylation reaction exceeded the diffusion limit, and this observation is inconsistent with the intermolecular model. Thus, both intermolecular and intramolecular enzymatic mechanisms operate in the modulation of the calcium-activated potassium channel of the posterior pituitary. These studies provide a functional characterization of the interactions between enzyme and substrate in intact patches of cell membrane.  相似文献   

19.
Formal kinetics of an enzymatic reaction is considered in terms of a dynamic scheme of catalysis. Conformation reconstructions of a liberated enzyme and e-s-complex are analysed upon the phase plane. An expression for the enzyme stationary activity depending on the rate of conformation reconstructions is obtained. The case of purely dynamic catalysis is analysed and possible initiation of enzymatic activity variation in time connected with initial synchronization of molecules is shown. This phenomenon is considered as a possible criterion of the dynamic character of enzymatic catalysis.  相似文献   

20.
纳米酶被认为在底物识别、催化机制、反应动力学等方面具有类似生物酶的特性,但纳米酶是否具有变性失活、并且在一定条件下恢复活性的特性,这是在纳米酶研究过程中需要关注的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号