首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis, the formation of new blood vessels from existing vasculature, is regulated primarily by endothelial cell activity. We show herein that the Ras family GTPase Rap1 has a key role in the regulation of angiogenesis by modulating endothelial cell functions. Blood vessel growth into fibroblast growth factor 2 (FGF2)-containing Matrigel plugs was absent from rap1a/ mice, and aortic rings derived from rap1a/ mice failed to sprout primitive tubes in response to FGF2, when the tissue was embedded in Matrigel. Knocking down either rap1a or rap1b, two closely related rap1 family members, in human microvascular endothelial cells (HMVECs) by utilizing siRNA confirmed that Rap1 plays key roles in endothelial cell function. The rap1a or rap1b knockdown resulted in decreased adhesion to extracellular matrices and impaired cell migration. HMVEC monolayers lacking Rap1 had increased permeability, and Rap1-deficient endothelial cells failed to form three-dimensional tubular structures when they were plated on Matrigel in vitro. Finally, the activation levels of extracellular signal-regulated kinase (ERK), p38, and Rac, which are important signaling molecules in angiogenesis, were all reduced in response to FGF2 when either of the Rap1 proteins was depleted. These observations place Rap1 centrally in the human angiogenic process and suggest that both the Rap1a and Rap1b proteins are required for angiogenesis and that Rap1 is a critical mediator of FGF-induced ERK activation.  相似文献   

2.
Angiogenesis inhibition is an important therapeutic strategy for advanced stage prostate cancer. Previous work from our laboratory showed that sustained stimulation of Rap1 by 8-pCPT-2''-O-Me-cAMP (8CPT) via activation of Epac, a Rap1 GEF, or by expression of a constitutively active Rap1 mutant (cRap1) suppresses endothelial cell chemotaxis and subsequent angiogenesis. When we tested this model in the context of a prostate tumor xenograft, we found that 8CPT had no significant effect on prostate tumor growth alone. However, in cells harboring cRap1, 8CPT dramatically inhibited not only prostate tumor growth but also VEGF expression and angiogenesis within the tumor microenvironment. Subsequent analysis of the mechanism revealed that, in prostate tumor epithelial cells, 8CPT acted via stimulation of PKA rather than Epac/Rap1. PKA antagonizes Rap1 and hypoxic induction of 1α protein expression, VEGF production and, ultimately, angiogenesis. Together these findings provide evidence for a novel interplay between Rap1, Epac, and PKA that regulates tumor-stromal induction of angiogenesis.  相似文献   

3.
Decreased nitric oxide (NO) bioavailability underlies a number of cardiovascular pathologies, including hypertension. The shear stress exerted by flowing blood is the main determinant of NO release. Rap1 promotes integrin‐ and cadherin‐mediated signaling. Here, we show that Rap1 is a critical regulator of NO production and endothelial function. Rap1 deficiency in murine endothelium attenuates NO production and diminishes NO‐dependent vasodilation, leading to endothelial dysfunction and hypertension, without deleterious effects on vessel integrity. Mechanistically, Rap1 is activated by shear stress, promotes the formation of the endothelial mechanosensing complex—comprised of PECAM‐1, VE‐cadherin and VEGFR2‐ and downstream signaling to NO production. Our study establishes a novel paradigm for Rap1 as a regulator of mechanotransduction.  相似文献   

4.
Mechanisms of angiogenesis   总被引:8,自引:0,他引:8  
Tissue activity of angiogenesis depends on the balance of many stimulating or inhibiting factors. The key signaling system that regulates proliferation and migration of endothelial cells forming the basis of any vessel are vascular endothelium growth factors (VEGF) and their receptors. The VEGF-dependent signaling system is necessary for formation of the embryonic vascular system. Neoangiogenesis during tumor growth is also associated with activation of this signaling system. The biological significance of the effect of such system on the cells depends on the content in tissue of various factors of the VEGF family and their receptors, while in the case of VEGFA it is defined by the ratio of different isoforms of this growth factor. A number of other signaling systems are also involved in regulation of the main steps of vessel formation. The signaling system Dll4/Notch regulates selection of endothelial cells for beginning of angiogenic expansion by endowing particular properties to endothelial cells leading in this process. An important step in vessel stabilization and maturation is vascular wall formation. Signaling system PDGFB/PDGFRbeta as well as angiopoietins Ang1, Ang2, and their receptor Tie2 are involved in recruiting mural cells (pericytes and smooth muscle cells). Identification of key molecules involved in the regulation of angiogenesis may provide new possibilities for development of drugs suitable for inhibition of angiogenesis or its stimulation in various pathologies.  相似文献   

5.
Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for development, wound healing, and tumor progression. The VEGF pathway plays irreplaceable roles during angiogenesis, but how other signals cross-talk with and modulate VEGF cascades is not clearly elucidated. Here, we identified that Gpr126, an endothelial cell-enriched gene, plays an important role in angiogenesis by regulating endothelial cell proliferation, migration, and tube formation. Knockdown of Gpr126 in the mouse retina resulted in the inhibition of hypoxia-induced angiogenesis. Interference of Gpr126 expression in zebrafish embryos led to defects in intersegmental vessel formation. Finally, we identified that GPR126 regulated the expression of VEGFR2 by targeting STAT5 and GATA2 through the cAMP-PKA-cAMP-response element-binding protein signaling pathway during angiogenesis. Our findings illustrate that GPR126 modulates both physiological and pathological angiogenesis through VEGF signaling, providing a potential target for the treatment of angiogenesis-related diseases.  相似文献   

6.
An in-depth understanding of the molecular and cellular complexity of angiogenesis continues to advance as new stimulators and inhibitors of blood vessel formation are uncovered. Gaining a more complete understanding of the response of blood vessels to both stimulatory and inhibitory molecules will likely contribute to more effective strategies to control pathological angiogenesis. Here, we provide evidence that endothelial cell interactions with structurally altered collagen type IV may suppress the expression of insulin-like growth factor binding protein-4 (IGFBP-4), a well documented inhibitor of the IGF-1/IGF-1R signaling axis. We report for the first time that IGFBP-4 differentially inhibits angiogenesis induced by distinct growth factor signaling pathways as IGFBP-4 inhibited FGF-2- and IGF-1-stimulated angiogenesis but failed to inhibit VEGF-induced angiogenesis. The resistance of VEGF-stimulated angiogenesis to IGFBP-4 inhibition appears to depend on sustained activation of p38 MAPK as blocking its activity restored the anti-angiogenic effects of IGFBP-4 on VEGF-induced blood vessel growth in vivo. These novel findings provide new insight into how blood vessels respond to endogenous inhibitors during angiogenesis stimulated by distinct growth factor signaling pathways.  相似文献   

7.
The small GTPase Rap1 regulates inside-out integrin activation and thereby influences cell adhesion, migration, and polarity. Several Rap1 effectors have been described to mediate the cellular effects of Rap1 in a context-dependent manner. Radil is emerging as an important Rap effector implicated in cell spreading and migration, but the molecular mechanisms underlying its functions are unclear. We report here that the kinesin KIF14 associates with the PDZ domain of Radil and negatively regulates Rap1-mediated inside-out integrin activation by tethering Radil on microtubules. The depletion of KIF14 led to increased cell spreading, altered focal adhesion dynamics, and inhibition of cell migration and invasion. We also show that Radil is important for breast cancer cell proliferation and for metastasis in mice. Our findings provide evidence that the concurrent up-regulation of Rap1 activity and increased KIF14 levels in several cancers is needed to reach optimal levels of Rap1–Radil signaling, integrin activation, and cell–matrix adhesiveness required for tumor progression.  相似文献   

8.
One outcome of T-cell receptor (TCR) signaling is increased affinity and avidity of integrins for their ligands. This occurs through a process known as inside-out signaling, which has been shown to require several molecular components including the adapter proteins ADAP (adhesion and degranulation-promoting adapter protein) and SKAP-55 (55-kDa src kinase-associated phosphoprotein) and the small GTPase Rap1. Herein, we provide evidence linking ADAP and SKAP-55 to RIAM, a recently described adapter protein that binds selectively to active Rap1. We identified RIAM as a key component linking the ADAP/SKAP-55 module to the small GTPase Rap1, facilitating TCR-mediated integrin activation. We show that RIAM constitutively interacts with SKAP-55 in both a heterologous transfection system and primary T cells and map the region essential for this interaction. Additionally, we find that the SKAP-55/RIAM complex is essential both for TCR-mediated adhesion and for efficient conjugate formation between T cells and antigen-presenting cells. Mechanistic studies revealed that the ADAP/SKAP-55 module relocalized RIAM and Rap1 to the plasma membrane following TCR activation to facilitate integrin activation. These results describe for the first time a link between ADAP/SKAP-55 and the Rap1/RIAM complex and provide a potential new mechanism for TCR-mediated integrin activation.  相似文献   

9.
Jeyaraj SC  Unger NT  Chotani MA 《Life sciences》2011,88(15-16):645-652
The Ras related GTPase Rap has been implicated in multiple cellular functions. A vital role for Rap GTPase in the cardiovasculature is emerging from recent studies. These small monomeric G proteins act as molecular switches, coupling extracellular stimulation to intracellular signaling through second messengers. This member of the Ras superfamily was once described as the transformation suppressor with the ability to ameliorate the Ras transformed phenotype; however, further studies uncovered a unique set of guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and effector proteins for Rap suggesting a more sophisticated role for this small GTPase. At least three different second messengers can activate Rap, namely cyclic AMP (cAMP), calcium and diacylglycerol. More recently, an investigation of Rap in the cardiovasculature has revealed multiple pathways of regulation involving Rap in this system. Two closely related isoforms of Rap1 exist, 1a and 1b. Murine genetic models exist for both and have been described. Although thought at first to be functionally redundant, these isoforms have differing roles in the cardiovasculature. The activation of Rap1a and 1b in various cell types of the cardiovasculature leads to alterations in cell attachment, migration and cell junction formation. This review will focus on the role of these Rap1 GTPases in hematopoietic, endothelial, smooth muscle, and cardiac myocyte function, and conclude with their potential role in human disease.  相似文献   

10.
11.
Angiogenesis     
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration. ECM also signals the EC cytoskeleton to initiate blood vessel morphogenesis. Dynamic remodeling of ECM, particularly by membrane-type matrix metalloproteases (MT-MMPs), coordinates formation of vascular tubes with lumens and provides guidance tunnels for pericytes that assist ECs in the assembly of vascular basement membrane. ECM also provides a binding scaffold for a variety of cytokines that exert essential signaling functions during angiogenesis. In the embryo, ECM is equally critical for angiogenesis and vessel stabilization, although there are likely important distinctions from the adult because of differences in composition and abundance of specific ECM components.  相似文献   

12.
BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.  相似文献   

13.
c-Cbl functions as a multifunctional adaptor and an E3 ubiquitin ligase. Several studies have shown that c-Cbl is involved in cytoskeleton-mediated events, but the molecular mechanisms linking c-Cbl to cytoskeletal rearrangements remain to be elucidated. Our previous results indicated that c-Cbl facilitates spreading and migration of v-Abl-transformed NIH 3T3 fibroblasts and suggested that small GTPases play important roles in the cytoskeletal effects of c-Cbl in this system. To elucidate the individual contributions of small GTPases to these effects, we assessed the roles of endogenous Rac1, RhoA and Rap1 in the c-Cbl-dependent spreading and migration of v-Abl-transformed fibroblasts overexpressing c-Cbl, using RNAi. Furthermore, since it has been shown that Rap1 can act as an upstream regulator of Rac1 in inducing cell spreading, we analyzed the interplay between Rap1 and Rac1 in the signaling pathways connecting c-Cbl to the cytoskeletal events. Our results indicate that Rac1 is essential for cell migration and spreading, whereas activation of RhoA exerts a negative effect. We have also shown that Rap1 is essential for cell spreading, although not for migration in our experimental system. Furthermore, we provide evidence that Rap1 is located upstream of Rac1 in one of the signaling pathways that regulate c-Cbl-facilitated cell spreading. Overall, our findings are consistent with the model describing the connection of c-Cbl to the cytoskeletal rearrangements via two pathways, one of which is mediated by PI3K and Rac1, and the other, by CrkL/C3G, Rap1 and Rac1.  相似文献   

14.
The small GTPase Rap1 controls the actin cytoskeleton by regulating Rho GTPase signaling. We recently established that the Rap1 effectors Radil and Rasip1, together with the Rho GTPase activating protein ArhGAP29, mediate Rap1-induced inhibition of Rho signaling in the processes of epithelial cell spreading and endothelial barrier function. Here, we show that Rap1 induces the independent translocations of Rasip1 and a Radil-ArhGAP29 complex to the plasma membrane. This results in the formation of a multimeric protein complex required for Rap1-induced inhibition of Rho signaling and increased endothelial barrier function. Together with the previously reported spatiotemporal control of the Rap guanine nucleotide exchange factor Epac1, these findings elucidate a signaling pathway for spatiotemporal control of Rho signaling that operates by successive protein translocations to and complex formation at the plasma membrane.  相似文献   

15.
Toll-like receptors (TLRs) play an important role in regulating muscle regeneration and angiogenesis in response to ischemia. TLR2 knockout mice exhibit pronounced skeletal muscle necrosis and abnormal vessel architecture after femoral artery ligation, suggesting that TLR2 signaling is protective during ischemia. TLR4, an important receptor in inflammatory signaling, has been shown to regulate TLR2 expression in other systems. We hypothesize that a similar relationship between TLR4 and TLR2 may exist in hindlimb ischemia in which TLR4 upregulates TLR2, a mediator of angiogenesis and perfusion recovery. We examined the expression of TLR2 in unstimulated and in TLR-agonist treated endothelial cells (ECs). TLR2 expression (low in control ECs) was upregulated by lipopolysaccharide, the danger signal high mobility group box-1, and hypoxia in a TLR4-dependent manner. Endothelial tube formation on Matrigel as well as EC permeability was assessed as in vitro measures of angiogenesis. Time-lapse imaging demonstrated that ECs lacking TLR4 formed more tubes, whereas TLR2 knockdown ECs exhibited attenuated tube formation. TLR2 also mediated EC permeability, an initial step during angiogenesis, in response to high-mobility group box-1 (HMGB1) that is released by cells during hypoxic injury. In vivo, ischemia-induced upregulation of TLR2 required intact TLR4 signaling that mediated systemic inflammation, as measured by local and systemic IL-6 levels. Similar to our in vitro findings, vascular density and limb perfusion were both enhanced in the absence of TLR4 signaling, but not if TLR2 was deleted. These findings indicate that TLR2, in the absence of TLR4, improves angiogenesis and perfusion recovery in response to ischemia.  相似文献   

16.
The vasculature is a highly specialized organ that functions in a number of key physiological tasks including the transport of oxygen and nutrients to tissues. Formation of the vascular system is an essential and rate-limiting step in development and occurs primarily through two main mechanisms, vasculogenesis and angiogenesis. Both vasculogenesis, the de novo formation of vessels, and angiogenesis, the growth of new vessels from pre-existing vessels by sprouting, are complex processes that are mediated by the precise coordination of multiple cell types to form and remodel the vascular system. A host of signaling molecules and their interaction with specific receptors are central to activating and modulating vessel formation. This review article summarizes the current state of research involving signaling molecules that have been demonstrated to function in the regulation of vasculogenesis and angiogenesis, as well as molecules known to play a role in vessel maturation, hypoxia-driven angiogenesis and arterial-venous specification.  相似文献   

17.
The evolutionarily conserved Notch signaling pathway is required for normal vascular development and function, and genetic associations link select Notch receptors and ligands to human clinical syndromes featuring blood vessel abnormalities and stroke susceptibility. A previously described mouse model engineered to suppress canonical Notch signaling in vascular smooth muscle cells (vSMCs) revealed surprising anatomical defects in arterial patterning and vessel maturation, suggesting that vSMCs have the functional capacity to influence blood vessel formation in a Notch signaling-dependent manner. In further analyses using this model system, we now show that explanted aortic ring tissue and Matrigel implants from the smooth muscle Notch signaling-deficient mice yield markedly diminished responses to angiogenic stimuli. Furthermore, cultured Notch signaling-deficient primary vSMCs have reduced proliferation and migration capacities and reveal diminished expression of PDGF receptor β and JAGGED1 ligand. These observations prompted a series of endothelial cell (EC)-vSMC co-culture experiments that revealed a requirement for intact vSMC Notch signals via JAGGED1 for efficient EC Notch1 receptor activation and EC proliferation. Taken together, these studies suggest a heterotypic model wherein Notch signaling in vSMCs provides early instructive cues to neighboring ECs important for optimal postnatal angiogenesis.  相似文献   

18.
Notch signaling is important in angiogenesis during embryonic development. However, the embryonic lethal phenotypes of knock‐out and transgenic mice have precluded studies of the role of Notch post‐natally. To develop a mouse model that would bypass the embryonic lethal phenotype and investigate the possible role of Notch signaling in adult vessel growth, we developed transgenic mice with Cre‐conditional expression of the constitutively active intracellular domain of Notch1 (IC‐Notch1). Double transgenic IC‐Notch1/Tie2‐Cre embryos with endothelial specific IC‐Notch1 expression died at embryonic day 9.5. They displayed collapsed and leaky blood vessels and defects in angiogenesis development. A tetracycline‐inducible system was used to express Cre recombinase postnatally in endothelial cells. In adult mice, IC‐Notch1 expression inhibited bFGF‐induced neovascularization and female mice lacked mature ovarian follicles, which may reflect the block in bFGF‐induced angiogenesis required for follicle growth. Our results demonstrate that Notch signaling is important for both embryonic and adult angiogenesis and indicate that the Notch signaling pathway may be a useful target for angiogenic therapies. genesis 52:809–816, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.  相似文献   

20.
Rap1b is activated by platelet agonists and plays a critical role in integrin α(IIb)β(3) inside-out signaling and platelet aggregation. Here we show that agonist-induced Rap1b activation plays an important role in stimulating secretion of platelet granules. We also show that α(IIb)β(3) outside-in signaling can activate Rap1b, and integrin outside-in signaling-mediated Rap1b activation is important in facilitating platelet spreading on fibrinogen and clot retraction. Rap1b-deficient platelets had diminished ATP secretion and P-selectin expression induced by thrombin or collagen. Importantly, addition of low doses of ADP and/or fibrinogen restored aggregation of Rap1b-deficient platelets. Furthermore, we found that Rap1b was activated by platelet spreading on immobilized fibrinogen, a process that was not affected by P2Y(12) or TXA(2) receptor deficiency, but was inhibited by the selective Src inhibitor PP2, the PKC inhibitor Ro-31-8220, or the calcium chelator demethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis. Clot retraction was abolished, and platelet spreading on fibrinogen was diminished in Rap1b-deficient platelets compared with wild-type controls. The defects in clot retraction and spreading on fibrinogen of Rap1b-deficient platelets were not rescued by addition of MnCl(2), which elicits α(IIb)β(3) outside-in signaling in the absence of inside-out signaling. Thus, our results reveal two different activation mechanisms of Rap1b as well as novel functions of Rap1b in platelet secretion and in integrin α(IIb)β(3) outside-in signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号