首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F Gindullis  D Dechyeva  T Schmidt 《Génome》2001,44(5):846-855
We have constructed a sugar beet bacterial artificial chromosome (BAC) library of the chromosome mutant PRO1. This Beta vulgaris mutant carries a single chromosome fragment of 6-9 Mbp that is derived from the wild beet Beta procumbens and is transmitted efficiently in meiosis and mitosis. The library consists of 50,304 clones, with an average insert size of 125 kb. Filter hybridizations revealed that approximately 3.1% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents eight genome equivalents. Thus, there is a greater than 99.96% probability that any sequence of the PROI genome can be found in the library. Approximately 0.2% of the clones hybridized with centromeric sequences of the PRO1 minichromosome. Using the identified BAC clones in fluorescence in situ hybridization experiments with PRO1 and B. procumbens chromosome spreads, their wild-beet origin and centromeric localization were demonstrated. Comparative Southern hybridization of pulsed-field separated PROI DNA and BAC inserts indicate that the centromeric region of the minichromosome is represented by overlapping clones in the library. Therefore, the PRO1 BAC library provides a useful tool for the characterization of a single plant centromere and is a valuable resource for sugar beet genome analysis.  相似文献   

2.
In sugar beet (Beta vulgaris L.), early bolting is caused by a single dominant gene, designated B. Twenty AFLP markers selected from a 7.8-cM segment of the B region on chromosome 2 were used to screen a YAC library, and a first-generation physical map including the B gene, made up of 11 YACs, was established. Because the genome coverage of the YAC library was low, a BAC library was constructed in the vector pBeloBAC11. This library consists of 57,600 clones with an average insert size of 116 kb, corresponding to 8.8 genome equivalents. Screening of the BAC library with chloroplast and mitochondrial DNA probes indicated that less than 0.1% of the clones contained organelle-derived DNA. To fill the gaps in the physical map around the B gene, the BAC library was screened with four AFLP markers and 10 YAC-derived probes. In total, 54 different BACs were identified. Overlaps between BACs were detected by using BAC termini amplified by PCR as probes, and by RFLP fingerprinting. In this way, a minimal tiling path of the central 4.6-cM region was constructed, which consists of 14 BACs. The B locus was localized to a 360-kb contig, a size which makes positional cloning of the gene feasible.  相似文献   

3.
4.
 Thirty sugar beet (Beta vulgaris) lines conferring complete resistance to the beet cyst nematode (BCN, Heterodera schachtii) originating from interspecific crosses with wild beets of the section Procumbentes (B. procumbens, B. webbiana and B. patellaris) were investigated by morphology and wild beet-specific molecular markers. The beet lines carrying chromosome mutations consisted of monosomic additions (2n=18+1), fragment additions (2n=18+fragment) and translocations (2n=18) from the wild beets. Genome-specific single-copy, satellite and repetitive probes were applied to study the origin, chromosomal assignment and presence of nematode resistance genes. Within the wild beet species at least three different resistance genes located on different chromosomes were distinguished: Hs1 on the homoelogous chromosomes I of each species, Hs2 on the homoelogous chromosomes VII of B. procumbens and B. webbiana and Hs3 on chromosome VIII of B. webbiana. A clear distinction between the three chromosomes was possible by morphological and molecular means. The translocation lines were separated into two different groups: one containing the resistance gene Hs1 from chromosome I and the other carrying a different nematode resistance gene. The molecular data combined with sequence analyses of Hs1 of the three wild beet species revealed a clear distinction between B. procumbens and B. webbiana. The evolutionary and taxonomical relationship of these species supporting the idea of three different species originating from a common ancestor is discussed. Received: 6 April 1998 / Accepted: 22 April 1998  相似文献   

5.
Two diploid (2n=18) sugar beet (Beta vulgaris L.) lines which carry monogenic traits for nematode (Heterodera schachtii Schm.) resistance located on translocations from the wild beet species Beta procumbens were investigated. Short interspersed repetitive DNA elements exclusively hybridizing with wild beet DNA were found to be dispersed around the translocations. The banding pattern as revealed by genomic Southern hybridization was highly conserved among translocation lines of different origins indicating that the translocations are not affected by recombination events with sugar beet chromosomes. Physical mapping revealed that the entire translocation is represented by a single Sal I fragment 300 kb in size. A representative YAC (yeast artifical chromosome) library consisting of approximately 13,000 recombinant clones (2.2 genome equivalents) with insert sizes ranging between 50 and 450 kb and an average of 130kb has been constructed from the resistant line A906001. Three recombinant YACs were isolated from this library using the wild beet-specific repetitive elements as probes for screening. Colinearity between YAC inserts and donor DNA was confirmed by DNA fingerprinting utilizing these repetitive probes. The YACs were arranged into two contigs with a total size of 215 kb; these represent a minimum of 72% of the translocation.  相似文献   

6.
Sugar beet (Beta vulgaris L.) is highly susceptible to the beet cyst nematode (Heterodera schachtii Schm.). Three resistance genes originating from the wild beets B. procumbens (Hs1 pro-1) and B. webbiana (Hs1 web-1, Hs2 web-7) have been transferred to sugar beet via species hybridization. We describe the genetic localization of the nematode resistance genes in four different sugar beet lines using segregating F2 populations and RFLP markers from our current sugar beet linkage map. The mapping studies yielded a surprising result. Although the four parental lines carrying the wild beet translocations were not related to each other, the four genes mapped to the same locus in sugar beet independent of the original translocation event. Close linkage (0–4.6 cM) was found with marker loci at one end of linkage group IV. In two populations, RFLP loci showed segregation distortion due to gametic selection. For the first time, the non-randomness of the translocation process promoting gene transfer from the wild beet to the sugar beet is demonstrated. The data suggest that the resistance genes were incorporated into the sugar beet chromosomes by non-allelic homologous recombination. The finding that the different resistance genes are allelic will have major implications on future attempts to breed sugar beet combining the different resistance genes.  相似文献   

7.
We have constructed a soybean bacterial artificial chromosome (BAC) library using the plant introduction (PI) 437654. The library contains 73728 clones stored in 192384-well microtiter plates. A random sampling of 230 BACs indicated an average insert size of 136 kb with a range of 20 to 325 kb, and less than 4% of the clones do not contain inserts. Ninety percent of BAC clones in the library have an average insert size greater than 100 kb. Based on a genome size of 1115 Mb, library coverage is 9 haploid genome equivalents. Screening the BAC library colony filters with cpDNA sequences showed that contamination of the genomic library with chloroplast clones was low (1.85%). Library screening with three genomic RFLP probes linked to soybean cyst nematode (SCN) resistance genes resulted in an average of 18 hits per probe (range 7 to 30). Two separate pools of forward and reverse suppression subtractive cDNAs obtained from SCN-infected and uninfected roots of PI 437654 were hybridized to the BAC library filters. The 488 BACs identified from positive signals were fingerprinted and analyzed using FPC software (version 4.0) resulting in 85 different contigs. Contigs were grouped and analyzed in three categories: (1) contigs of BAC clones which hybridized to forward subtracted cDNAs, (2) contigs of BAC clones which hybridized to reverse subtracted cDNAs, and (3) contigs of BAC clones which hybridized to both forward and reverse subtracted cDNAs. This protocol provides an estimate of the number of genomic regions involved in early resistance response to a pathogenic attack.  相似文献   

8.
9.
In common bean, a complex disease resistance (R) gene cluster, harboring many specific R genes against various pathogens, is located at the end of the linkage group B4. A BAC library of the Meso-american bean genotype BAT93 was screened with PRLJ1, a probe previously shown to be specific to the B4 R gene cluster, leading to the identification of 73 positive BAC clones. BAC-end sequencing (BES) of the 73 positive BACs generated 75 kb of sequence. These BACs were organized into 6 contigs, all mapped at the B4 R gene cluster. To evaluate the potential of BES for marker development, BES-derived specific primers were used to check for linkage with two allelic anthracnose R specificities Co-3 and Co-3 ( 2 ), through the analysis of pairs of Near Isogenic Lines (NILs). Out of 32 primer pairs tested, two revealed polymorphisms between the NILs, confirming the suspected location of Co-3 and Co-3 ( 2 ) at the B4 cluster. In order to identify the orthologous region of the B4 R gene cluster in the two model legume genomes, bean BESs were used as queries in TBLASTX searches of Medicago truncatula and Lotus japonicus BAC clones. Putative orthologous regions were identified on chromosome Mt6 and Lj2, in agreement with the colinearity observed between Mt and Lj for these regions.  相似文献   

10.
11.
Jacobs G  Dechyeva D  Wenke T  Weber B  Schmidt T 《Genetica》2009,135(2):157-167
We constructed a sugar beet (Beta vulgaris) bacterial artificial chromosome (BAC) library of the monosomic addition line PAT2. This chromosomal mutant carries a single additional chromosome fragment (minichromosome) derived from the wild beet Beta patellaris. Restriction analysis of the mutant line by pulsed-field gel electrophoresis was used to determine HindIII as a suitable enzyme for partial digestion of genomic DNA to generate large-insert fragments which were cloned into the vector pCC1. The library consists of 36,096 clones with an average insert size of 120 kb, and 2.2% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents 5.7 genome equivalents providing the probability of 99.67% that any sequence of the PAT2 genome can be found in the library. Hybridization to high-density filters was used to isolate 89 BACs containing arrays of the centromere-associated satellite repeats pTS5 and pTS4.1. Using the identified BAC clones in fluorescent in situ hybridization experiments with PAT2 and Beta patellaris chromosome spreads their wild beet origin and centromeric localization was demonstrated. Multi-colour FISH with differently labelled satellite repeats pTS5 and pTS4.1 was used to investigate the large-scale organization of the centromere of the PAT2 minichromosome in detail. FISH studies showed that the centromeric satellite pTS5 is flanked on both sides by pTS4.1 arrays and the arms of the minichromosome are terminated by the Arabidopsis-type telomeric sequences. FISH with a BAC, selected from high-density filters after hybridization with an RFLP marker of the genetic linkage group I, demonstrated that it is feasible to correlate genetic linkage groups with chromosomes. Therefore, the PAT2 BAC library provides a useful tool for the characterization of Beta centromeres and a valuable resource for sugar beet genome analysis.  相似文献   

12.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

13.
BAC contig development by fingerprint analysis in soybean.   总被引:11,自引:0,他引:11  
L F Marek  R C Shoemaker 《Génome》1997,40(4):420-427
We constructed a soybean bacterial artificial chromosome (BAC) library suitable for map-based cloning and physical mapping in soybean. This library consists of approximately 40 000 clones (4-5 genome equivalents) stored individually in 384-well microtiter dishes. A random sampling of 224 clones yielded an average insert size of 150 kb, giving a 98% probability of recovering any specific sequence. We screened the library for seven single or very low copy genie or genomic sequences using the polymerase chain reaction (PCR) and found between one and seven BACs for each of the seven sequences. When testing the library with a portion of the soybean psbA chloroplast gene, we found less than 1% chloroplast DNA representation. We also screened the library for eight different classes of disease resistance gene analogs (RGAs) and identified BACs containing all RGAs except class 8. We arranged nine of the class 1 RGA BACs and six of the class 3 RGA BACs into individual contigs based on fingerprint patterns observed after Southern probing of restriction digests of the member BACs with a class-specific sequence. This resulted in the partial localization of the different multigene family sequences without precise definition of their exact positions. Using PCR-based end rescue techniques and RFLP mapping of BAC ends, we mapped individual BACs of each contig onto linkage group J of the soybean public map. The class 1 contig mapped to the region on linkage group J that contains several disease resistance genes. The class 1 contig extended approximately 400 kb. The arrangement of the BACs within this contig has been confirmed using PCR. One end of the class 1 contig core BAC mapped to two positions on linkage group J and cosegregated with two class 1 RGA loci, suggesting that this segment is within an area of regional duplication.  相似文献   

14.
Durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, genomes AB) is an economically important cereal used as the raw material to make pasta and semolina. In this paper we present the construction and characterization of a bacterial artificial chromosome (BAC) library of tetraploid durum wheat cv. Langdon. This variety was selected because of the availability of substitution lines that facilitate the assignment of BACs to the A and B genome. The selected Langdon line has a 30-cM segment of chromosome 6BS from T. turgidum ssp. dicoccoides carrying a gene for high grain protein content, the target of a positional cloning effort in our laboratory. A total of 516,096 clones were organized in 1,344 384-well plates and blotted on 28 high-density filters. Ninety-eight percent of these clones had wheat DNA inserts (0.3% chloroplast DNA, 1.4% empty clones and 0.3% empty wells). The average insert size of 500 randomly selected BAC clones was 131 kb, resulting in a coverage of 5.1-fold genome equivalents for each of the two genomes, and a 99.4% probability of recovering any gene from each of the two genomes of durum wheat. Six known copy-number probes were used to validate this theoretical coverage and gave an estimated coverage of 5.8-fold genome equivalents. Screening of the library with 11 probes related to grain storage proteins and starch biosynthesis showed that the library contains several clones for each of these genes, confirming the value of the library in characterizing the organization of these important gene families. In addition, characterization of fingerprints from colinear BACs from the A and B genomes showed a large differentiation between the A and B genomes. This library will be a useful tool for evolutionary studies in one of the best characterized polyploid systems and a source of valuable genes for wheat. Clones and high-density filters can be requested at Communicated by P. LangridgeThe first two authors contributed equally to the investigation  相似文献   

15.
Early bolting in sugar beet (Beta vulgaris L.) is controlled by the dominant gene B. From an incomplete physical map around the B gene, 18 bacterial artificial chromosomes (BACs) were selected for marker development. Three BACs were shotgun-sequenced, and 61 open reading frames (ORFs) were identified. Together with 104 BAC ends from 54 BACs, a total number of 55,464 nucleotides were sequenced. Of these, 37 BAC ends and 12 ORFs were selected for marker development. Thirty-one percent of the sequences were found to be single copy and 24%, low copy. From these sequences, 15 markers from ten different BACs were developed. Ten polymorphisms were determined by simple agarose gel electrophoresis of either restricted or non-restricted PCR products. Another five markers were determined by tetra-primer amplification refractory mutation system-PCR. In order to select candidate BACs for cloning the gene, genetic linkage between seven markers and the bolting gene was calculated using 1,617 plants from an F2 population segregating for early bolting. The recombination values ranged between 0.0033 and 0.0201. In addition, a set of 41 wild and cultivated Beta accessions differing in their early bolting character was genotyped with seven markers. A common haplotype encompassing two marker loci and the b allele was found in all sugar beet varieties, indicating complete linkage disequilibrium between these loci. This suggests that the bolting gene is located in close vicinity to these markers, and the corresponding BACs can be used for cloning the gene.  相似文献   

16.
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.  相似文献   

17.
Large-insert genomic bacterial artificial chromosome (BAC) libraries of two culturally and economically important oyster species, Crassostrea virginica and C. gigas, have been developed as part of an international effort to develop tools and reagents that will advance our ability to conduct genetic and genomic research. A total of 73,728 C. gigas clones with an average insert size of 152 kb were picked and arrayed representing an 11.8-fold genome coverage. A total of 55,296 clones with an average insert size of 150 kb were picked and arrayed for C. virginica, also representing an 11.8-fold genome coverage. The C. gigas and C. virginica libraries were screened with probes derived from selected oyster genes using high-density BAC colony filter arrays. The probes identified 4 to 25 clones per gene for C. virginica and 5 to 50 clones per gene for C. gigas. We conducted a preliminary analysis of genetic polymorphism represented in the C. gigas library. The results suggest that the degree of divergence among similar sequences is highly variable and concentrated in intronic regions. Evidence supporting allelic polymorphism is reported for two genes and allelic and/or locus specific polymorphism for several others. Classical inheritance studies are needed to confirm the nature of these polymorphisms. The oyster BAC libraries are publicly available to the research community on a cost-recovery basis at  相似文献   

18.
A plant-transformation-competent binary BAC library was constructed from the genomic DNA of the chromosome 9 monosomic addition line of Beta corolliflora Zoss. in sugar beet (B. vulgaris. L). This monosomic addition line (designated M14) is characterized by diplosporic reproduction caused by the alien chromosome carrying the gene(s) responsible for diplospory. The library consists of 49,920 clones with an average insert size of 127 kb, representing approximately 7.5 haploid genome equivalents and providing a greater than 99% probability of isolating a single-copy DNA sequence from the library. To develop the scaffold of a physical map for the alien chromosome, B. corolliflora genome-specific dispersed repetitive DNA sequences were used as probes to isolate BAC clones derived from the alien chromosome in the library. A total of 2,365 positive clones were obtained and arrayed into a sublibrary specific for B. corolliflora chromosome 9 (designated bcBAC-IX). The bcBAC-IX sublibrary was further screened with a subtractive cDNA pool generated from the ovules of M14 and the floral buds of B. vulgaris by the suppression subtractive hybridization method. One hundred and three positive binary BACs were obtained, which potentially contain the genes of the alien chromosome specifically expressed during the ovule and embryo development of M14, and may be associated with apomictic reproduction. Thus, these binary BAC clones will be useful for identification of the genes for apomixis by genetic transformation.Communicated by H. C. Becker  相似文献   

19.
A bacterial artificial chromosome (BAC) library of the genomic DNA of Coprinus cinereus strain MP#2 was constructed using the BAC vector pBACTZ, which carries the C. cinereus trp1 gene. The library consists of 1536 clones. Analysis of inserts in some of the clones suggested that the library covers five times the C. cinereus genome. Screening of the BAC clones using ten markers mapped on nine different chromosomes also indicated that the library is likely to cover the whole length of the genomic DNA. We show an example of transformation of C. cinereus with BACs containing inserts of longer than 170kb.  相似文献   

20.
The major histocompatibility complex (MHC) is composed of a tightly linked cluster of genes; in dogs, this is referred to as the dog leukocyte antigen (DLA) region. The canine MHC is located on chromosome 12, and several genes within the DLA region have been identified that have significant sequence similarity to their human counterparts. However, in order to characterize other loci in the DLA region, DNA sequencing has begun using a canine bacterial artificial chromosome (BAC) library. Initially 135 BAC clones were isolated from a BAC library using a mixture of human and canine probes. These BAC clones were screened with locus-specific primers in polymerase chain reactions (PCRs). Fifty-six BAC clones were subjected to FingerPrinted Contig (FPC) analysis and several overlapping clones were identified. One BAC clone RP81-231-G24 has been sequenced. Preliminary sequence analysis of this 150 kb clone indicates that it contains the region where the class I and class III regions are joined and encompasses DLA-12a, DLA-53, DLA-12, DLA-64, TNF-alpha, and a canine gene that appears to resemble the HLA class III gene HSPA1A (HSP70-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号