首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of purine derivatives with nitramine groups are calculated by using density functional theory (DFT). The molecular theory density, heats of formation, bond dissociation energies and detonation performance are investigated at DFT-B3LYP/6-311G** level. The isodesmic reaction method is employed to calculate the HOFs of the energies obtained from electronic structure calculations. Results show that the position of nitramine groups can influence the values of HOFs. The bond dissociation energies and the impact sensitivity are analyzed to investigate the thermal stability of the purine derivatives. The calculated bond dissociation energies of ring-NHNO2 and NH-NO2 bond show that the NH-NO2 bond should be the trigger bond in pyrolysis processes. The H50 of most compounds are larger than that of CL-20 and RDX.  相似文献   

2.
Based on fully optimized geometric structures at DFT-B3LYP/6-311G** level, we calculated electronic structures, heats of formation, strain energies, bond dissociation energies and detonation performance (detonation velocity and detonation pressure) for a series of polynitraminecubanes. Our results have shown that energy gaps of cubane derivatives are much higher than that of triaminotrinitrobenzene (TATB), which means that cubane derivatives may be more sensitive than TATB. Polynitraminecubanes have high and positive heats of formation, and a good linear relationship between heats of formation and nitramine group numbers was presented. As the number of nitramine groups in the molecule increases, the enthalpies of combustion values are increasingly negative, but the specific enthalpy of combustion values decreases. It is found that all cubane derivatives have high strain energies, which are affected by the number and position of nitramine group. The calculated bond dissociation energies of C-NHNO2 and C-C bond show that the C-C bond should be the trigger bond in the pyrolysis process. It is found that detonation velocity (D), detonation pressure (P) and molecule density (ρ) have good linear relationship with substituented group numbers. Heptanitraminecubane and octanitraminecubane have good detonation performance over 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), and they can be regarded as potential candidates of high energy density compounds (HEDCs). The results have not only shown that these compounds may be used as HEDCs, but also provide some useful information for further investigation.  相似文献   

3.
The derivatives of purine are designed through substituting the hydrogen atoms on it for nitro and amino functional groups. Geometries and frequency are analyzed at the B3LYP/6-31 G** level of density functional theory(DFT). Heats of formation (HOF), bond dissociation energy(BDE) and detonation parameters (detonation velocity and detonation pressure) are obtained in detail at the same level. It is found that the BDE values of all derivatives are over 120KJ·mol(-1), and have high positive heats of formation. These derivatives possess excellent detonation properties, for B1, B2, and C, the detonation velocity are 9.58, 9.57,and 9.90 km·s(-1), and the detonation pressure are 43.40,46.05, and 46.37 Gpa, respectively, the detonation performances are better than cyclotrimethylenetrinitramine (RDX)and cyclotetramethylenetetranitramine (HMX). Hence, the derivations of purine may be promising well-behaved high energy density materials.  相似文献   

4.
A series of polynitroprismanes, C(6)H(6-n )(NO(2))(n) (n?=?1-6) intended for use as high energy density compounds (HEDCs) were designed computationally. Their electronic structures, heats of formation, interactions between nitro groups, specific enthalpies of combustion, bond dissociation energies, and explosive performances (detonation velocities and detonation pressures) were calculated using density functional theory (DFT) with the 6-311 G** basis set. The results showed that all of the polynitroprismanes had high positive heats of formation that increased with the number of substitutions for the prismane derivatives, while the specific enthalpy of combustion decreased as the number of nitro groups increased. In addition, the range of enthalpy of combustion reducing is getting smaller. Interactions between ortho (vicinal) groups deviate from the group additivity rule and decrease as the number of nitro groups increases. In terms of thermodynamic stability, all of the polynitroprismanes had higher bond dissociation energies (BDEs) than RDX and HMX. Detonation velocities and detonation pressures were estimated using modified Kamlet-Jacobs equations based on the heat of detonation (Q) and the theoretical density of the molecule (ρ). It was found that ρ, D, and P are strongly linearly related to the number of nitro groups. Taking both their energetic properties and thermal stabilities into account, pentanitroprismane and hexanitroprismane are potential candidate HEDCs.  相似文献   

5.
A series of polydinitroaminocubanes have been designed computationally. We calculated the heats of formation, the detonation velocity (D) and detonation pressure (P) of the title compounds by density function theory (DFT) with 6-311?G** basis set. The relationship between the heats of formation and the molecular structures is discussed. The result shows that all cubane derivatives have high and positive heats of formation, which increase with increasing number of dinitroamino groups. The detonation performances of the title compound were estimated by Kamlet-Jacobs equation, and the result indicated that most cubane derivatives have good detonation performance over RDX (hexahydro-1,3,5-trinitro-1,3,5-trizine) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane). In addition, we also found that the heat of detonation (Q) is another very important impact in increasing detonation performance except density. The relative stabilities of the title compound are discussed in the terms of the calculated heats of formation, and the energy gaps between the frontier orbitals. The results have not only shown that these compounds may be used as high energy density compounds (HEDCs), but also provide some useful information for further investigation.  相似文献   

6.
The heats of formation (HOFs), electronic structures, energetic properties, and thermal stabilities of a series of energetic bridged di-1,3,5-triazine derivatives with different substituents and linkages were studied using density functional theory. It was found that the groups -N(3) and -N=N- are effective structural units for improving the HOF values of the di-1,3,5-triazine derivatives. The effects of the substituents on the HOMO-LUMO gap combine with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that substituting the -ONO(2), -NF(2), or -N=N- group is very useful for enhancing the detonation performance of these derivatives. Analysis of the bond dissociation energies for several relatively weak bonds suggests that most of the derivatives have good thermal stability. On the whole, the -NH(2), -N(3), -NH-, and -CH=CH- groups are effective structural units for increasing the thermal stabilities of the derivatives. Based on detonation performance and thermal stability, nine of the compounds can be considered potential candidates for high energy density materials with reduced sensitivity.  相似文献   

7.
In an attempt to find superior propellants, 2-diazo-4,6-dinitrophenol (DDNP) and its –NO2, –NH2, –CN, –NC, –ONO2, and –NF2 derivatives were studied at the B3LYP/6-311++G** level of density functional theory (DFT). Sensitivity was evaluated using bond dissociation enthalpies (BDEs) and molecular surface electrostatic potentials. The C–NO2 bond appears to be the trigger bond during the thermolysis process for these compounds, except for the –ONO2 and –NF2 derivatives. Electrostatic potential results show that electron-withdrawing substituents make the charge imbalance more anomalous, which may change the strength of the bond, especially the weakest trigger bond. Most of the DDNP derivatives have the impact sensitivities that are higher than that of DDNP, making them favorable for use as solid propellants in micro-rockets. The theoretical densities (ρ), heats of formation (HOFs), detonation energies (Q), detonation pressures (P), and detonation velocities (D) of the compounds were estimated. The effects of various substituent groups on ρ, HOF, Q, D, and P were investigated. Some derivatives exhibit perfect detonation properties. The calculated relative specific impulses (I r,sp) of all compounds except for –NH2 derivatives were higher than that of DDNP, and also meet the requirements of propellants.  相似文献   

8.
Trinitromethyl-substituted aminotetrazoles with –NH2, –NO2, –N3, and –NHC(NO2)3 groups were investigated at the B3LYP/6-31G(d) level of density functional theory. Their sublimation enthalpies, thermodynamic properties, and heats of formation were calculated. The thermodynamic properties of these compounds increase with temperature as well as with the number of nitro groups attached to the tetrazole ring. In addition, the detonation velocities and detonation pressures of these compounds were successfully predicted using the Kamlet–Jacobs equations. It was found that these compounds exhibit good detonation properties, and that compound G (D = 9.2 km/s, P = 38.8 GPa) has the most powerful detonation properties, which are similar to those of the well-known explosive HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Finally, the electronic structures and bond dissociation energies of these compounds were calculated. The BDEs of their C–NO2 bonds were found to range from 101.9 to 125.8 kJ/mol-1. All of these results should provide useful fundamental information for the design of novel HEDMs.  相似文献   

9.
This work is a study of 5-amino-3-nitro-1,2,4-triazole (ANTA), 3-nitro-1,2,4-triazol-5-one (NTO), and nitrated derivatives of ANTA and NTO. RDX and TNT were studied for comparison. ANTA and NTO are low-sensitive high explosives with detonation properties comparable to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). We showed previously that nitrated NTO and ANTA compounds, when used in a glycidyl azide polymer (GAP) matrix in rocket propellants, could give impulses above 2600 m/s and that the oxygen balance is positive. If used in aluminized explosives, the heat of detonation may be increased to a practical level significantly above RDX/aluminum compositions. Here, we use two different methods for sensitivity and two density functional theory functionals, B3LYP and M06-2X with the 6-31G(d) basis set, together with the complete basis set method CBS-4M. Calculations indicate that most of the nitrated derivatives have nearly equal sensitivity to RDX. Significantly different bond dissociation energies in the nitrimino functional group are predicted, although most models give much the same result.  相似文献   

10.
We have explored the geometric and electronic structures, band gap, thermodynamic properties, density, detonation velocity and detonation pressure of aminopolynitropyrazoles using the density functional theory (DFT) at the B3LYP/aug-cc-pVDZ level. The calculated detonation velocity and detonation pressure, stability and sensitivity of model compounds appear to be promising compared to the known explosives 3,4-dinitro-1 H-pyrazole (3,4-DNP), 3,5-dinitro-1 H-pyrazole (3,5-DNP), hexahydro-1,3,5-trinitro-1,3,5-triazinane (RDX) and octahydro-1,3,5,7-tetranitro-l,3,5,7-tetraazocane (HMX). The position of NH2 group in the polynitropyrazoles presumably determines the structure, stability, sensitivity, density, detonation velocity and detonation pressure.  相似文献   

11.
We have performed density functional theory and volume-based thermodynamics calculations to study the effects of different combinations of energetic anions and cations on the crystal densities, heats of formation, energetic properties, and thermodynamics of formation for a series of 5-nitroiminotetrazolate-based ionic salts. The results show that the substitution of the -NO2, -NF2, -N3, or -C(NO2)3 group is helpful for increasing the densities of the salts. Incorporating every substituent (-NH2, -NO2, -NF2, -N3, or -C(NO2)3) into the salt is favorable for improving its HOF and detonation performance. Incorporating the cation B1, B2, B10, or B11 into the salts is helpful for improving its detonation properties. Increasing negative charge for the 5-nitroiminotetrazolate-based salts is unfavorable for enhancing the density and detonation performance, but is helpful for increasing the HOFs. Many salts present comparable detonation performance with commonly used explosives RDX or HMX. Among them, 21 salts have near or better properties than HMX. The thermodynamics of formation of the salts show that the majority of the 5-nitroiminotetrazolate salts with the cation B1, B3, B9, B10, B12 could be synthesized by the proposed reactions.  相似文献   

12.
Molecular dynamics (MD) methods were employed to study the binding energies and mechanical properties of selected crystal planes of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/nitroguanidine (NQ) cocrystals at different molecular molar ratios. The densities and detonation velocities of the cocrystals at different molar ratios were estimated. The intermolecular interaction and bond dissociation energy (BDE) of the N–NO2 bond in the HMX:NQ (1:1) complex were calculated using the B3LYP, MP2(full) and M06-2X methods with the 6-311++G(d,p) and 6-311++G(2df,2p) basis sets. The results indicated that the HMX/NQ cocrystal prefers cocrystalizing in a 1:1 molar ratio, and the cocrystallization is dominated by the (0 2 0) and (1 0 0) facets. The K, G, and E values of the ratio of 1:1 are smaller than those of the other ratios, and the 1:1 cocrystal has the best ductility. The N–NO2 bond becomes stronger upon the formation of the intermolecular H-bonding interaction and the sensitivity of HMX decreases in the cocrystal. This sensitivity change in the HMX/NQ cocrystal originates not only from the formation of the intermolecular interaction but also from the increment of the BDE of N–NO2 bond in comparison with isolated HMX. The HMX/NQ (1:1) cocrystal exhibits good detonation performance. Reduced density gradient (RDG) reveals the nature of cocrystallization. Analysis of the surface electrostatic potential further confirmed that the sensitivity decreases in complex (or cocrystal) in comparison with that in isolated HMX.
Graphical Abstract Binding energies and mechanical properties of HMX/NQ cocrystals in different molecular molar ratios were studied using molecular dynamics methods. The origin of the sensitivity change in the HMX/NQ cocrystal originates from formation of intermolecular interactions and the bond dissociation energy increment of the N–NO2 bond
  相似文献   

13.
Based on DFT-B3LYP/6-311G** method, the molecular geometric structures of polynitramineprismanes are fully optimized. The detonation performances, energy gaps, strain energies, as well as their stability were investigated to look for high energy density compounds (HEDCs). Our results show that all polynitramineprismanes have high and positive heat of formation. To construct the relationship between stabilities and structures, energy gaps and bond dissociation energies are calculated, and these results show that the energy gaps of prismane derivatives are much higher than that of TATB (0.1630). In addition, the C-C bonds on cage are confirmed as trigger bond in explosive reaction. All polynitramineprismanes have large strain energies, and the strain energies of all compounds are slightly smaller than prismane, which indicated that the strain energies were somewhat released compared to prismane. Considering the quantitative criteria of HEDCs, hexanitramineprismane is a good candidate of high energy compounds.  相似文献   

14.
The pyrazole-pyridine derivatives were optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G(d,p) and DFT-B3P86/6-31G(d,p) levels. Molecular mechanics (MM) calculations were performed for the title compounds. Heats of formation (HOFs) were predicted through designed isodesmic reactions. Detonation performance was evaluated by using the Kamlet-Jacobs equations based on the calculated densities and heats of formation. The thermal stability of the title compounds was investigated via the bond dissociation energies (BDEs). The simulation results reveal that the compound with one pyrazole ring that is fully nitro-substituted performs similarly to the famous explosive HMX, and the compound with two pyrazole rings that are fully nitro-substituted outperforms HMX. According to the quantitative standard of energetics and stability as high energy density materials (HEDMs), the compound with two pyrazole rings that are fully nitro-substituted essentially satisfies this requirement.  相似文献   

15.
Bis[4-nitraminofurazanyl-3-azoxy]azofurazan (ADNAAF), synthesized in our previous work [1], contains four furazan units connected to the linkage of the azo-group and azoxy-group. For further research, some theoretical characters were studied by the density functional theoretical (DFT) method. The optimized structures and the energy gaps between the HOMO and LUMO were studied at the B3LYP/6-311++G** level. The isodesmic reaction method was used for estimating the enthalpy of formation. The detonation performances were estimated with Kamlet–Jacobs equations based on the predicted density and enthalpy of formation in the solid state. ADAAF was also calculated by the same method for comparison. It was found that the nitramino group of ADNAAF can elongate the length of adjacent C–N bonds than the amino group of ADAAF. The gas-phase and solid-phase enthalpies of formation of ADNAAF are larger than those of ADAAF. The detonation performances of ADNAAF are better than ADAAF and RDX, and similar to HMX. The trigger bond of ADNAAF is the N–N bonds in the nitramino groups, and the nitramino group is more active than the amino group (–NH2).  相似文献   

16.
The adsorption of hexogen (RDX) molecule on the Al(111) surface was investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employ a supercell (4×4×3) slab model and three-dimensional periodic boundary conditions. The strong attractive forces between RDX molecule and aluminum atoms induce the N?O and N?N bond breaking of the RDX. Subsequently, the dissociated oxygen atoms, NO2 group and radical fragment of RDX oxidize the Al surface. The largest adsorption energy is ?835.7 kJ mol–1. We also investigated the adsorption and decomposition mechanism of RDX molecule on the Al(111) surface. The activation energy for the dissociation steps of V4 configuration is as large as 353.1 kJ mol–1, while activation energies of other configurations are much smaller, in the range of 70.5–202.9 kJ mol–1. The N?O is even easier than the N?NO2 bond to decompose on the Al(111) surface.  相似文献   

17.
An azo bridge (–N?=?N–) can not only desensitize explosives but also dramatically increase their heats of formation and explosive properties. Amino and nitro are two important high energy density functional groups. Here, we present calculations on 1-nitro-1-triazene (NH2–N?=?N–NO2). Thermal stability and detonation parameters were predicted theoretically at CCSD(T)/6-311G* level, based on the geometries optimized at MP2/6-311G* level. It was found that the p?→?π conjugation interaction and the intramolecular hydrogen bonding that exist in the system together increase the thermal stability of the molecule. Moreover, the detonation parameters were evaluated to be better than those of the famous HMX and RDX. Finally, the compound was demonstrated to be a high energy density material.  相似文献   

18.
The nitramine compounds containing benzene ring were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (ρ), heat of formation (HOF), energy gap (ΔE(LUMO-HOMO)), charge on the nitro group (-Q(NO2)), detonation velocity (D) and detonation pressure (P), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. It is found that there are good linear relationships between density, heat of formation, detonation velocity, detonation pressure and the number of nitro group. The simulation results reveal that molecule G performs similarly to famous explosive HMX, and molecule H outperforms HMX. According to the quantitative standard of energetics as an HEDC (high energy density compound), molecule H essentially satisfies this requirement. These results provide basic information for molecular design of novel high energetic density compounds.  相似文献   

19.
Two new nitramine compounds containing pyridine, 1,3,5,7-tetranitro-8-(nitromethyl) -4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine and its N-oxide 1,3,5,7-tetranitro-8- (nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine-4-ol were proposed. Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures, infrared spectra, and thermodynamic properties at the B3LYP/6-31G* level. Their detonation performances evaluated using the Kamlet-Jacobs equations with the calculated densities and heats of formation are superior to those of HMX. The predicted densities of them were ca. 2 g*cm-3, detonation velocities were over 9 km*s-1, and detonation pressures were about 40 GPa, showing that they may be potential candidates of high energy density materials (HEDMs). The natural bond orbital analysis indicated that N-NO2 bond is the trigger bond during thermolysis process. The stability of the title compounds is slightly lower than that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20). The results of this study may provide basic information for the molecular design of new HEDMs.  相似文献   

20.
As a kind of promising energetic materials, the double furazan-based and furoxan-based compounds have raised concerns of many researchers in recent years. In this paper, the optimized structures, energetic properties, heat of formation (HOF), detonation properties, and bond dissociation energies of these compounds were calculated by density functional theory (DFT) method. The results show that the N-O bond, which is close to the adjacent coordinated oxygen atom in furoxan ring, is more fragile than the other N-O bonds in the ring. The double furazan-based derivatives are more stable than the double furoxan-based derivatives. All the titled compounds are divided into five groups because of the different substitute groups on both ends. The HOFs of the substances offer the order of 4 group (the both ends are 1,2,3,4-tetrazine ) ≈ 5 group (1,2,4,5-tetrazine) > 3 group (tetrazole) ≈ 1 group (1,2,3-triazole) > 2 group (1,2,4-triazole). All the title compounds also can be divided into three types with the different linkages, -N=N-, -N=N(O)-, and -NH-NH-. The results show that the HOFs of the compounds with different linkages obey the order -N=N- type > -N=N(O)- type> -NH-NH- type. For all titled compounds, bis(4-(1,2,4,5-tetrazin-3-yl)-1,2,5-oxadiazol-3-yl) diazene (E5) has the best gas-phase and solid-phase HOFs. The heat of detonation(Q) of bis(3-(1,2,3,4-tetrazin-5-yl)-1,2,5-oxidiazole-2 -oxide)diazene-1,2-diyl (B4) is the best of all titled compounds. The density of bis((3-2H-tetrazol-5-yl)-1,2,5-oxidiazole -2-oxide)oxidodiazene-1,2-diyl (A3) is the best and the second best is bis((4-2H-tetrazol-5-yl)-1,2,5-oxidiazol-3-yl) diazene (E3). The detonation velocities and detonation pressure of A3 and E3 are better than other titled compounds. 1,2-bis((4-2H-tetrazol-5-yl)-1,2,5 -oxidiazol-3-yl) diazene-1-oxide (D3) and 1,2-bis((4-2H-tetrazol-5-yl)-1,2,5-oxidiazol-3-yl) hydrazine (F3) have superior D and P with low sensitivity. The tetrazole ring plays a vital role in improving detonation velocities and pressure. The results can provide some foundational information for designing new high-density energetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号