首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Chemical functionalization of a single-walled carbon nanotube (CNT) with different carboxylic derivatives including –COOX (X?=?H, CH3, CH2NH2, CH3Ph, CH2NO2, and CH2CN) has been theoretically investigated in terms of geometric, energetic, and electronic properties. Reaction energies have been calculated to be in the range of ?0.23 to ?7.07 eV. The results reveal that the reaction energy is increased by increasing the electron withdrawing character of the functional groups so that the relative magnitude order is ?CH2NO2?>?CH2CN?>?H?>?CH2Ph?>?CH3?>?CH2NH2. The chemical functionalization leads to an increase in HOMO/LUMO energy gap of CNT by about 0.32 to 0.35 eV (except for ?H). LUMO, HOMO, and Fermi level of the CNT are shifted to lower energies especially in the case of ?CH2NO2 and ?CH2CN functional groups. Therefore, it leads to an increment in work function of the tube, impeding the field electron emission.  相似文献   

2.
We investigated the viability of using a BC2N nanotube to detect formaldehyde (H2CO) molecule by means of B3LYP and M06 density functionals. The results indicate that the molecule is weakly adsorbed on the intrinsic BC2N nanotube releasing energy of 0.8 kcal mol-1 (at B3LYP/6-31G(d)) without significant effect on the HOMO-LUMO energy gap and electrical conductivity of the tube. Thus, H2CO cannot be detected using this intrinsic nanotube. To overcome this problem, a carbon atom of the tube wall was substituted by a Si atom. It was demonstrated that the Si-doped tube cannot only strongly adsorb the H2CO molecule, but also may effectively detect its presence because of the increase in the electric conductivity of the tube.  相似文献   

3.
The preferred mechanisms of racemization for three tris chelate complexes, Co(acac)3, Fe(phen)3 3+ and Fe[S2CN(CH2)4]3, were investigated by molecular modeling. The transition states for both a Bailar twist and a Rây-Dutt twist were considered; semi-empirical calculations (PM3) yielded activation energies. The preferred mechanism was the Bailar twist for Co(acac)3 and Fe[S2CN(CH2)4]3 with activation energies of 83.2 and 7.3 kcal mol−1, respectively, and the Rây-Dutt twist for Fe(phen)3 3+ with an activation energy of 114.4 kcal mol−1. These results are compared with those of geometrical models.  相似文献   

4.
The selectivity of phosphoryl P(O)R3, sulfoxide S(O)R2, and carbonyl C(O)R2 (R?=?NH2, CH3, OH, and F) derivatives with lanthanide cations (La3+, Eu3+, Lu3+) was studied by density functional theory calculations. Theoretical approaches were also used to investigate energy and the nature of metal–ligand interaction in the model complexes. Atoms in molecules and natural bond orbital (NBO) analyses were accomplished to understand the electronic structure of ligands, L, and the related complexes, L–Ln3+. NBO analysis demonstrated that the negative charge on phosphoryl, carbonyl, and sulfoxide oxygen (OP, OC, and OS) has maximum and minimum values when the connected –R groups are –NH2 and –F. The metal–ligand distance declines as, –F?>?–OH?>?–CH3?>?–NH2. Charge density at the bond critical point and on the lanthanide cation in the L–Ln3+ complexes varies in the order –F?<?–OH?<?–CH3?<?–NH2, due to greater ligand to metal charge transfer, which is well explained by energy decomposition analysis. It was also illustrated that E(2) values of Lp(N)?→?σ*(Y–N) vary in the order P=O ? S=O ? C=O and the related values of Lp(N)?→?σ*(Y=O) change as C=O ? S=O ? P=O in (NH2)nYO ligands (Y?=?P, C, and S). Trends in the L–Ln3+ CP–corrected bond energies are in good accordance with the optimized OY?Ln distances. It seems that, comparing the three types of ligands studied, NH2–substituted are the better coordination ligands.
Graphical Abstract Density functional theory (B3LYP) calculations were used to compare structural, electronic and energy aspects of lanthanide (La, Eu, Lu) complexes of phosphine derivatives with those of carbonyls and sulfoxides in which the R– groups connected to the P=O, C=O and S=O are –NH2, –CH3, –OH and –F.
  相似文献   

5.
The nature and strength of intermolecular Se ?N interaction between selenium-containing compounds HSeX (X = CH3, NH2, CF3, OCH3, CN, OH, NO2, Cl, F), and NH3 have been investigated at the MP2/aug-cc-pVDZ level. The Se ?N interaction is found to be dependent on the substituent groups, which greatly affect the positive electrostatic potential of Se atoms and the accepting electron ability of X-Se σ ? antibonding orbital. Energy decomposition of the Se ?N interaction reveals that electrostatic and induction forces are comparable in the weak-bonded complexes and induction becomes more significant in the complexes with strong electron-withdrawing substituents. Natural bond orbital (NBO) analysis indicates that the primary source of the induction is the electron transfer from the N lone pair to the X-Se σ ? antibonding orbital. The geometry of the complex and the interaction directionality of NH3 to X-Se bond can be regarded as a consequence of the exchange-repulsion. The topological analysis on the electron density reveals the nature of closed-shell interaction in these X-Se ?N contacts. The Se ?N interaction in the complexes with the strong electron-withdrawing substituent has a partly covalent character.  相似文献   

6.
The salts - yellow [Cr(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Au(CN)2]3 · 2H2O, pale yellow [Ru(NH3)6][Ag(CN)2]3 · 2H2O, yellow K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O, and colorless [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O - have been prepared by evaporation of aqueous solutions of potassium dicyanoargenate or potassium dicyanoaurate and salts of the appropriate cations. Hydrogen bonding between the cations and the cyano groups of the anions facilitates the formation of structures with strong metallophilic interactions between the anions. Thus, the [Au(CN)2] or [Ag(CN)2] ions self-associate into linear trimers in the isostructural set of crystals, [Cr(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1610(4) Å), [Co(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1557(2) Å), [Co(NH3)6][Au(CN)2]3 · 2H2O (Au?Au distance; 3.0939(4) Å), and [Ru(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1584(5) Å). Crystalline [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O also contains nearly linear trimers of the dicyanoaurate ion. Yellow crystals of K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O contain a centrosymmetric, bent chain of seven dicyanoaurate ions with Au?Au separations of 3.1806(3), 3.2584(4), and 3.1294(4) Å.  相似文献   

7.
《Inorganica chimica acta》1988,142(2):291-299
In coordinating solvents, the complex 1, 4, 8, 11- tetramethyl-1, 4, 8, 11-tetraazacyclotetradecane nickel(II) bisperchlorate exists as an equilibrium mixture involving four coordinate R,S,R,S-[Ni(tmc)]2+ and five coordinate R,S,R,S-[Ni(tmc)(solvent)]2+ species. Spectrophotometric measurements of this equilibrium in a number of solvents have been conducted over a range of temperatures and pressures. The stability order for the five coordinate complex in the solvents investigated is CH3CN>DMF>DMSO>C6H5CN> H2O>ClCH2CN at 25 °C. Differences in stability are considered in terms of the measured thermodynamic parameters ΔH° and ΔS°. Both steric and electronic factors were found to influence solvent coordination with the macrocyclic complex.For the equilibrium in CH3CN, C6H5CN, DMF and H2O, reaction volumes, ΔV°, of −3.2±0.5, −4.2±0.5, −0.2±0.5 and −0.5±0.5 cm3 mol−1 respectively have been determined. Each is significantly smaller than the corresponding solvent molar volume. The ΔV° for the equilibrium in CH3CN is comparable with the previously determined activation volume for exchange of this solvent on R, S, R, S- [Ni(tmc)(CH3CN)]2+. The equilibrium and measured volume parameters are discussed in relation to the mechanism for solvent exchange.  相似文献   

8.
The photochemical reaction of HCN at 184.9 nm is studied in the gas phase. (CN)2, H2, CH4, NH3, N2H4, C2H6, and CH3NH2 are identified as gas phase products, and a reaction mechanism is proposed. HCN polymers** are also obtained as solid reaction products, and their structure is investigated by Infrared Spectroscopy, UV-Visible Spectroscopy, Mass Spectrometry, and Amino acid Analysis. The process and nature of the formation of the polymers are discussed.  相似文献   

9.
ABSTRACT

The ligand effects on the structures and properties (energetics, binding energies, charge distribution and optical properties) of the (CdSe)n clusters (n?=?3, 6, and 10) with P-containing (PH3, PH2Me, PHMe2 and PMe3) and N-containing (NH3, NH2Me, NHMe2 and NMe3) have been studied using density functional theory. The P atom and N atom in the ligands interact with Cd and form Cd–P and Cd–N bonds. The influence of P-containing ligands can be enhanced with increasing CH3 of ligands, while the N-containing ligands influence slightly change. A blueshift in absorption band was predicted for the clusters with increasing CH3 of P-containing ligands. We also found that the calculated binding energies for various ligands are found to decrease in the order PMe3?>?NH2Me?>?NHMe2?>?NH3?>?NMe3?>?PHMe2?>?PH2Me?>?PH3. The use of hydrogen atom for modelling of the CdSe cluster passivating ligands is found to yield unphysical results as well.  相似文献   

10.
The structures and spectroscopic properties of new Mn(II), Co(II), Cd(II), Hg(II), Ag(I), Rh(III), and Ir(I) complexes with the ligand BZLMH derived from 6-acetyl-1,3,7-trimethyllumazine (lumazine = pteridine-2,4(1H,3H)-dione) and benzohydrazide are reported. Complexes have been characterized by elemental analyses, spectroscopic studies (IR, UV-vis, 1H, 13C and 15N NMR) and magnetic measurements. In all the complexes, the lumazine-derived ligand appears to be coordinated in either tridentate (N5, N61 and O63) or tetradentate forms (O4, N5, N61 and O63). The molecular structures of the [Co(BZLMH)(H2O)(CH3CN)2](ClO4)2 · CH3CN and [RhCl2(BZLM)(CH3CN)] · CH3CN complexes, determined by single crystal X-ray diffraction, have allowed to corroborate both coordination behaviours.The cytotoxic activity of the free ligand and complexes against human neuroblastoma NB69 cell line is also described. The differential analysis of the initial cytotoxic screening data has shown good activity only for the [RhCl2(BZLM)(CH3CN)] · CH3CN compound at concentrations at around 2 μM; for the other complexes, a modulation of the cell growth was not found upon complexation, this non-specific effect strongly suggesting an apoptotic behaviour.  相似文献   

11.
The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are ?220.5 kJ mol?1 for Al/3NG-NO, ?111.9 kJ mol?1 for Al/3NG-NH3, and ?347.7 kJ mol?1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.  相似文献   

12.
Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO–LUMO orbital analysis, and UV–vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of ?19.90, ?19.66, ?14.01, ?8.70, and ?4.76 kJ mol?1 were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study.  相似文献   

13.
We report geometries, stabilization energies, symmetry adapted perturbation theory (SAPT) and quantum theory of atoms in molecules (QTAIM) analyses of a series of carbene–BX3 complexes, where X = H, OH, NH2, CH3, CN, NC, F, Cl, and Br. The stabilization energies were calculated at HF, B3LYP, MP2, MP4 and CCSD(T)/aug-cc-pVDZ levels of theory using optimized geometries of all the complexes obtained from B3LYP/aug-cc-pVTZ. Quantitatively, all the complexes indicate the presence of B–Ccarbene interaction due to the short B–Ccarbene distances. Inspection of stabilization energies reveals that the interaction energies increase in the order NH2 > OH > CH3 > F > H > Cl > Br > NC > CN, which is the opposite trend shown in the binding distances. Considering the SAPT results, it is found that electrostatic effects account for about 50% of the overall attraction of the studied complexes. By comparison, the induction components of these interactions represent about 40% of the total attractive forces. Despite falling in a region of charge depletion with ∇2 ρ BCP >0, the B–Ccarbene bond critical points (BCPs) are characterized by a reasonably large value of the electron density (ρ BCP) and HBCP <0, indicating that the potential energy overcomes the kinetic energy density at BCP and the B–Ccarbene bond is a polar covalent bond.  相似文献   

14.
The electrochromic properties of two new mixed valence ruthenium complexes: K[(NC5H4CH2PO3H2)RuIII(NH3)4(NC)RuII(CN)5] and K[(NC5H4PO3H2)RuIII(NH3)4(NC)RuII(CN)5], where phosphonic acid groups have been introduced at the pyridine ligand, have been studied in homogeneous solution and adsorbed on transparent nanocrystalline SnO2 electrodes. These species exhibit a superior stability with respect to the previously studied, K[(NC5H4CO2H)RuIII(NH3)4NCRuII(CN)5] complex, showing negligible optical density changes after cycling 20 000 times the electrodes between −0.5 and 0.5 V versus SCE.  相似文献   

15.
A new lanthanum ethylenediaminetetraacetate (EDTA) coordination polymer, {[La(EDTA)(H2O)]2}n (EDTA3− = [(CH2N)2(CH2COOH)(CH2COO)3]), was hydrothermally prepared from LaCl3 solution and ethylenediaminetetracetic acid at 448 K. The compound was characterized by elemental analysis, FTIR, TG-DTA, and X-ray crystallography. The structure consists of ladder-like chains of [La(EDTA)(H2O)]2 dimers bridged by O-C-O groups. Hydrothermal method successfully reduced the high number of La-aqua coordinations in known lanthanum EDTA to one giving rise to relatively compact structure. It has high thermal stability up to 550 K. Every EDTA ligand with COOH group is involved in eight La-O(N) bonds to three nine-coordinated La centers.  相似文献   

16.
The interactions of L-aminoglucosidic stereoisomers such as rhodostreptomycins A (Rho A) and B (Rho B) with cations (Mg2+, Ca2+, and H+) were studied by a quantum mechanical method that utilized DFT with B3LYP/6-311G**. Docking studies were also carried out in order to explore the surface recognition properties of L-aminoglucoside with respect to Mg2+ and Ca2+ ions under solvated and nonsolvated conditions. Although both of the stereoisomers possess similar physicochemical/antibiotic properties against Helicobacter pylori, the thermochemical values for these complexes showed that its high affinity for Mg2+ cations caused the hydration of Rho B. According to the results of the calculations, for Rho A–Ca2+(H2O)6, ΔH = ?72.21 kcal?mol?1; for Rho B–Ca2+(H2O)6, ΔH = ?72.53 kcal?mol?1; for Rho A–Mg2+(H2O)6, ΔH = ?72.99  kcal?mol?1 and for Rho B–Mg2+(H2O)6, ΔH = ?95.00  kcal?mol?1, confirming that Rho B binds most strongly with hydrated Mg2+, considering the energy associated with this binding process. This result suggests that Rho B forms a more stable complex than its isomer does with magnesium ion. Docking results show that both of these rhodostreptomycin molecules bind to solvated Ca2+ or Mg2+ through hydrogen bonding. Finally, Rho B is more stable than Rho A when protonation occurs.
Figure
Rho B–H showed higher stability since it is considered a proton pump inhibitor, and is therefore a stronger inhibitor of Helicobacter pylori  相似文献   

17.
The solvatothermal reactions of V2O5, the appropriate organoamine and HF in the temperature range 100-180 °C yielded a series of vanadium fluorides and oxyfluorides. The compounds [NH4][H3N(CH2)2NH3][VF6] (1) and [H3N(CH2)2NH3][VF5(H2O)] (2) contain mononuclear V(III) anions, while [H3N(CH2)2NH2(CH2)2NH3]2 [VF5(H2O)]2[VOF4(H2O)] (3) exhibits both V(IV) and V(III) mononuclear anions. Both compound 4, [H3NCH2(C6H4)CH2NH3][VOF4]·H2O (4·H2O) and compound 5, [HN(C2H4)3NH][V2O2F6 (H2O)2] (5) contain binuclear anions constructed from edge-sharing V(IV) octahedra. In contrast, [H3N(CH2)2NH2(CH2)2NH3]2[V4O4F14(H2O)2], (6) exhibits a tetranuclear unit of edge- and corner-sharing V(IV) octahedra. Compound 7, [H3N(CH2)2NH2][VF5], contains chains of corner-sharing {VIVF6} octahedra, while [H2N(C2H4)2NH2]3[V4F17O]·1.5H2O (8·1.5H2O) is two-dimensional with a layer of V(III) and V(IV) octahedra in an edge- and corner-sharing arrangement. In the case of [H3N(CH2)2NH3][V2O6] (9), there was no fluoride incorporation, and the anion is a one-dimensional chain of corner-sharing V(V) tetrahedra.  相似文献   

18.
Methane produced from formate is one of the important methanogensis pathways in the rumen. However, quantitative information of CH4 production from formate has been rarely reported. The aim of this study was to characterize the conversion rate (CR) of formic acid into CH4 and CO2 by rumen microorganisms. Ground lucerne hay was incubated with buffered ruminal fluid for 6, 12, 24 and 48 h. Before the incubation, 13C-labeled H13COOH was also supplied into the incubation bottle at a dose of 0, 1.5, 2.2 or 2.9 mg/g of DM substrate. There were no interactions (P>0.05) between dose and incubation time for all variables evaluated. When expressed as an absolute amount (ml in gas sample) or a relative CR (%), both 13CH4 and 13CO2 production quadratically increased (P<0.01) with the addition of H13COOH. The total 13C (13CH4 and 13CO2) CR was also quadratically increased (P<0.01) when H13COOH was added. Moreover, formate addition linearly decreased (P<0.031) the concentrations of NH3-N, total and individual volatile fatty acids (acetate, propionate and butyrate), and quadratically decreased (P<0.014) the populations of protozoa, total methanogens, Methanosphaera stadtmanae, Methanobrevibacter ruminantium M1, Methanobrevibacter smithii and Methanosarcina barkeri. In summary, formate affects ruminal fermentation and methanogenesis, as well as the rumen microbiome, in particular microorganisms which are directly or indirectly involved in ruminal methanogenesis. This study provides quantitative verification for the rapid dissimilation of formate into CH4 and CO2 by rumen microorganisms.  相似文献   

19.
Electrospray (ESI) mass spectra analysis of acetonitrile solutions of a series of neutral chloro dimers, pincer type, and monomeric palladacycles has enabled the detection of several of their derived ionic species. The monometallic cationic complexes Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1a) and [Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (1b) and the bimetallic cationic complex [κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]Pd-Cl-Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1c) were detected from an acetonitrile solution of the pincer palladacycles Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](Cl) 1. For the dimeric compounds {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (2, Y=H and 3, CF3), highly electronically unsaturated palladacycles [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2d, 3d) and their mono and di-acetonitrile adducts, namely, [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (2e, 3e) and [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)2]+ (2f and 3f) were detected together with the bimetallic complex [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]-Cl-Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N](CH3)2]+ (2a, 3a) and its acetonitrile adducts [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[ κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2b, 3b) and [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[κ1-C, κ1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2(CH3CN)]+ (2c, 3c). The dimeric palladacycle {Pd[κ1-C1-N-C(CH3O-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (4) is unique as it behaves as a pincer type compound with the OCH3 substituent acting as an intramolecular coordinating group which prevents acetonitrile full coordination, thus forming the cationic complexes [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)Pd]+ (4b), [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2- κOCN)Pd(CH3CN)]+ (4c) and [(C6H4 (o-MeO)CC(Cl)CH2N(CH3)2O, κCN)Pd-Cl-Pd(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)]+ (4a). ESI-MS spectra analysis of acetonitrile solutions of the monomeric palladacycles Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Cl)(Py) (5, Y=H and 6, Y=CF3) allows the detection of some of the same species observed in the spectra of the dimeric palladacycles, i.e., monometallic cationic 2d-3d, 2e-3e and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Py)}+ (5a, 6a) and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)(Py)}+ (5b, 6b) and the bimetallic 2a, 3a, 2b, 3b, 2c and 3c. In all cationic complexes detected by ESI-MS, the cyclometallated moiety was intact indicating the high stability of the four or six electron anionic chelate ligands. The anionic (chloride) or neutral (pyridine) ligands are, however, easily replaced by the acetonitrile solvent.  相似文献   

20.
A series of organotin(IV) complexes with Schiff base ligand pyruvic acid 3-hydroxy-2-naphthoyl hydrazone [R2SnLY]2, L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = CH3OH (1), R = n-C4H9, Y = N (2), R = PhCH2 (3), R = Ph, Y = CH3OH (4), R = Me, (5) and [R3SnLY], L = 3-HO-C10H6-2-CONHNC(CH3)COOH, R = n-C4H9, Y = H2O, (6), R = Ph (7), R = Me (8) have been synthesized. These complexes have been characterized by elemental analysis, IR, 1H and 119Sn NMR spectra. The crystal and molecular structure of complexes 1, 2 and 6 have been determined by X-ray single crystal diffraction. Results showed that complex 1 has a dimeric structure and the central tin atom is rendered seven-coordinate in a distorted pentagonal-bipyramid configuration. The complex 2 has a monoclinic structure and the central tin atom is rendered six-coordinate in octahedrally configuration with a planar of SnO3N unit and two apical aryl C atoms. And the whole structure consists of molecular units connected by weak intermolecular Sn?N and O-H?N interactions. In the complex 6, the central tin atom is five-coordinate in distorted trigonal-bipyramidal geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号