首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The properties of noble gas systems can be greatly extended by heterogeneous mixtures of elements. The geometrical structures and energies of mixed Ar–Kr–Xe clusters were investigated using ternary Lennard-Jones (TLJ) potential. For the Ar19Kr n Xe19, Ar19Kr19Xe n , and Ar n Kr19Xe19 (n?=?0–17) clusters investigated, the results show that only two minimum energy configurations exist, i.e., polytetrahedron and six-fold pancake. The inner core of all these clusters is composed mainly of Ar atoms, and Kr and Xe atoms are distributed on the surface with well mixed pattern for polytetrahedral and segregate pattern for six-fold pancake configurations. The relative stability property of Ar–Kr–Xe clusters with a certain composition is discussed. Moreover, the role of heterogeneity on the strain was investigated, and reduced strain energies in Ar–Kr–Xe clusters were studied to find possible ways of reducing strain. The results showed that the strain energies were affected mainly by Ar–Ar, Ar–Kr, and Xe–Xe bonds.
Figure
Investigation of the structures of Ar19Kr n Xe19, Ar19Kr19Xe n , and Ar n Kr19Xe19 (n?=?0–17) clusters reveal the existence of only exist two minimum energy configurations, i.e., polytetrahedron and six-fold pancake. Furthermore, reduced strain energies in Ar–Kr–Xe clusters were studied for the possible ways of reducing strain.  相似文献   

2.
The total energies, growth patterns, equilibrium geometries, relative stabilities, hardnesses, intramolecular charge transfer, and magnetic moments of HoSi n (n?=?12–20) clusters have been reexamined theoretically using two different density functional schemes in combination with relativistic small-core Stuttgart effective core potentials (ECP28MWB) for the Ho atoms. The results show that when n?=?12–15, the most stable structures are predicted to be exohedral frameworks with a quartet ground state, but when n?=?16–20, they are predicted to be endohedral frameworks with a sextuplet ground state. These trend in stability across the clusters (gauged from their dissociation energies) was found to be approximately the same regardless of the DFT scheme used in the calculations, with HoSi13, HoSi16, HoSi18, and HoSi20 calculated to be more stable than the other clusters. The results obtained for cluster hardness indicated that doping the Ho atom into Si13 and Si16 leads to the most stable HoSi n clusters, while doping Ho into the other Si n clusters increases the photochemical sensitivity of the cluster. Analyses of intracluster charge transfer and magnetic moments revealed that charge always shifts from the Ho atom to the Si n cluster during the creation of exohedral HoSi n (n?=?12–15) structures. However, the direction of charge transfer is reversed during the creation of endohedral HoSi n (n?=?16–20) structures, which implies that Ho acts as an electron acceptor when it is encapsulated in the Si n cage. Furthermore, when the most stable exohedral HoSi n (n?=?12–15) structures are generated, the 4f electrons of Ho are virtually unchanged and barely participate in intracluster bonding. However, in the most stable endohedral HoSi n (n?=?16–20) frameworks, a 4f electron does participate in bonding. It does this by transferring to the 5d orbital, which hybridizes with the 6s and 6p orbitals and then interacts with Si valence sp orbitals. Meanwhile, the total magnetic moments of the HoSi n (n?=?16–20) clusters are considerably higher than those of HoSi n (n?=?12–15). Interestingly, the endohedral HoSi16 and HoSi20 clusters can be viewed as the most suitable building blocks for novel high-density magnetic storage nanomaterials and for novel optical and optoelectronic photosensitive nanomaterials, respectively.  相似文献   

3.
Searching for materials and technologies of efficient CO2 capture is of the utmost importance to reduce the CO2 impact on the environment. Therefore, the (AlN)n clusters (n = 3–5) are researched using density functional theoretical calculations. The results of the optimization show that the most stable structures of (AlN)n clusters all display planar configurations at B3LYP and G3B3 methods, which are consistent with the reported results. For these planar clusters, we further systematically studied their interactions with carbon dioxide molecules to understand their adsorption behavior at the B3LYP/6–311+G(d,p) level, including geometric optimization, binding energy, bond index, and electrostatic. We found that the planar structures of (AlN)n (n = 3–5) can capture 3–5 CO2 molecules. The result indicates that (AlN)n (n = 3–5) clusters binding with CO2 is an exothermic process (the capture of every CO2 molecule on (AlN)n clusters releases at least 30 kcal mol-1 in relative free energy values). These analysis results are expected to further motivate the applications of clusters to be efficient CO2 capture materials.  相似文献   

4.
《Inorganica chimica acta》2006,359(5):1531-1540
A series of phosphine-linked oligomers of oxo-centered triruthenium-acetate clusters have been prepared by the reaction of [Ru3O(OAc)6(py)2(CH3OH)](PF6) (1) with di- or poly-phosphine. They have been characterized by elemental analysis, ESI-MS spectrometry, UV–Vis, IR, and 31P NMR spectroscopy, and cyclic and differential pulse voltammetry. The structures of diphosphine-linked dimeric compounds 4 and 7 were determined by X-ray crystallography. As revealed by redox wave splitting, weak to moderate electronic communication is operative between triruthenium clusters across bridging di- or poly-phosphine. With increase of the methylene number in Ph2P(CH2)nPPh2, electronic communication decreases rapidly in diphosphine-linked dimeric complexes [{Ru3O(OAc)6(py)2}2{μ-Ph2P(CH2)nPPh2}]2+ (n = 1–5).  相似文献   

5.
The geometries and thermochemistry of Re2(NO)4(CO) n (n?=?4, 3, 2, 1, 0) structures isovalent with the binuclear cobalt carbonyls Co2(CO) n+4 have been examined using density functional theory. Eight low-energy Re2(NO)4(CO)4 structures, all with formal Re–Re single bonds, lie within 6 kcal mol?1 of the global minimum. These eight structures include unbridged structures as well as structures with two bridging NO groups but no structures with bridging CO groups. Similarly, five low-energy Re2(NO)4(CO)3 structures, all with formal Re=Re double bonds, lie within 6 kcal mol?1 of the global minimum. Again these five structures include unbridged structures as well as structures with one or two bridging NO groups but no structures with bridging CO groups. The Re2(NO)4(CO) n (n?=?4, 3) appear to be fluxional systems similar to the well-known Co2(CO)8 for which doubly bridged and unbridged structures have approximately the same energies. The lowest energy Re2(NO)4(CO)2 structures have formal Re=Re double bonds including a structure with a five-electron donor bridging η2-μ-NO group. Isomeric Re2(NO)4(CO)2 structures with formal Re≡Re triple bonds lie approximately ~10 kcal mol?1 above the global minimum. For the more highly unsaturated Re2(NO)4(CO) and Re2(NO)4 systems, the lowest energy structures have formal Re≡Re triple bonds of length ~2.6 Å. Higher energy Re2(NO)4(CO) structures have shorter Re–Re distances of length ~2.5 Å suggesting formal quadruple bonds.
Graphical Abstract The geometries and thermochemistry of Re2(NO)4(CO) n (n?=?4, 3, 2, 1, 0) structures isovalent with the binuclear cobalt carbonyls Co2(CO) n+4 have been examined using density functional theory. A number of energetically closely spaced Re2(NO)4(CO)4 and Re2(NO)4(CO)3 structures are found, including unbridged and NO-bridged structures but no CO-bridged structures. The Re2(NO)4(CO) n (n?=?2, 1, 0) systems provide examples of Re–Re multiple bonds of orders ranging from 2 to 4.
  相似文献   

6.
One-dimensional (1D) gold nanostructures have been extensively studied due to their potential applications in nanoelectronic devices. Using first-principles calculations, composites consisting of a well-defined linear Au n (n?=?2–4) chain encapsulated in a (9,0) single-walled carbon nanotube (SWCNT) were studied. The translational energy barrier of a single Au atom in a (9,0) SWCNT was found to be 0.03 eV. This low barrier guaranteed the formation of Au n @ (9,0) SWCNT (n?=?1–4) composites. Bond lengths, differential charge densities, and electronic band structures of the composites were studied. The average Au–Au bond lengths in the composites were found to be almost the same as those in the corresponding free-standing linear Au n . The average bond length increased as the number of Au atoms increased. Charge transfer in all of these composites was slight, although a few valence electrons were transferred from the (9,0) SWCNT and the Au chains to intercalations. The conductivities of the encapsulated linear Au n (n?=?2–4) chains were enhanced to some extent by encapsulating them in the SWCNT.  相似文献   

7.
Heteroleptic triphenylphosphine carbonyl palladium clusters of different nuclearities were prepared under mild conditions by only varying the amount of ligand (PPh3) used in the synthesis: three different clusters were successfully isolated after CO bubbling in a solution of [Pd2(dba)3] (dba = dibenzylideneacetone) with 3, 1 or 0.5 equiv of PPh3, which led, respectively, to [Pd4(CO)5(PPh3)4] (1), [Pd10(CO)12(PPh3)6] (2) and [Pdn(CO)x(PPh3)y] (3) (n ≈ 24). The molecular structures of compounds 1 and 2 were determined by X-ray crystallography. The metal cores in these compounds were shown to consist in a butterfly for 1 and a bridged octahedron for 2. Compound 3 was shown to be at the boundary between molecular clusters and colloidal particles with tentative formulation arising from characterization data. These three clusters and the known [Pd10(CO)12(PBu3)6] and [Pd12(CO)15(PBu3)7] were submitted to NaBH4 reduction. The Pd4 cluster 1 did not react. The colloidal Pdn species led to no isolable product. By contrast, the two Pd10 and the Pd12 clusters led to reduction products, isolated as salts. In the case of the reduced Pd12 cluster, its structure was resolved by X-ray crystallography: the metal core consists of a face-capped octahedron. The reduced species reacted readily with Au(PPh3)+, confirming their anionic nature.  相似文献   

8.
The geometrical structures, electronic properties and relative stabilities of small bimetallic Be n Cu m (n?+?m?=?2–7) clusters have been systematically investigated by using a density functional method at the B3PW91 level. In the most stable structures of Be n Cu m , the Be atoms tend to gather together and construct similar configurations to those of pure Be n clusters. Meanwhile, there is a tendency for Cu atoms to segregate toward the Be n cluster surface. The successive binding energies, cohesive energies, second difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness of Be n Cu m are also investigated. All of them demonstrate that the clusters with even number of copper atoms present relatively higher stabilities. The natural population analyses on the Be n Cu m clusters reveal that, the charge transfers from Be to Cu when the average coordination numbers (Nc) of Be atom is less than 3, whereas the charge-transferring direction reverses when Nc(Be) increases.  相似文献   

9.
Five MnII-sdba coordination polymers with mono-, di-, tri-, tetra-nuclear cores based on the V-shaped 4,4′-dicarboxybiphenyl sulfone (H2sdba) ligands: [Mn(sdba)(phen)2(H2O)]n·3nH2O (1), [Mn2(sdba)2(μ-H2O)(py)4]n (2), [Mn3(sdba)2(Hsdba)2(2,2′-bipy)2]n (3), [Mn4(sdba)4(4-mepy)2(H2O)4]n·2nH2O (4) and [Mn4(sdba)4(bpp)4(μ-H2O)2]n·0.5nH2O (5) (phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine, 4-mepy = 4-picoline, bpp = 1,3-bi(pyridine-4-yl)propane) were hydrothermally synthesized and structurally characterized. The M-O-C metal clusters in above complexes act as SBUs, and the V-shaped sdba ligands link the SBUs to generate the novel frameworks. In complexes 1 and 3 their 1D chains are linked into the 2D planes through various hydrogen bonding. Complex 2 displays the 3D structure with interpenetrated threefold, while complexes 4 and 5 both exhibit the 3D structures with the tetra-nuclear Mn4 units. The magnetic susceptibility studies in the 2-300 K range for these complexes reveal the existence of anti-ferromagnetic exchange interactions between the MnII ions.  相似文献   

10.
Reaction of 1,3-bis(2′-Ar-imino)isoindolines (HLn, n = 1-7, Ar = benzimidazolyl, N-methylbenzimidazolyl, thiazolyl, pyridyl, 3-methylpyridyl, 4-methylpyridyl, and benzthiazolyl, respectively) with Cu(OCH3)2 yields mononuclear hexacoordinate complexes with Cu(Ln)2 composition. With cupric perchlorate square-pyramidal [CuII(HLn)(NCCH3)(OClO3)]ClO4 complexes (n = 1, 3, 4) were isolated as perchlorate salts, whereas with chloride CuII(HLn)Cl2 (n = 1, 4), or square-planar CuIICl2(HLn) (n = 2, 3, 7) complexes are formed. The X-ray crystal structures of Cu(L3)2, Cu(L5)2, [CuII(HL4)(NCCH3)(OClO3)]ClO4, CuIICl(L2) and CuIICl(L7) are presented along with electrochemical and spectral (UV-Vis, FT-IR and X-band EPR) characterization for each compound. When combined with base, the isoindoline ligands in the [CuII(HLn)(NCCH3)(OClO3)]ClO4 complexes undergo deprotonation in solution that is reversible and induces UV-Vis spectral changes. Equilibrium constants for the dissociation are calculated. X-band EPR measurements in frozen solution show that the geometry of the complexes is similar to the corresponding X-ray crystallographic structures. The superoxide scavenging activity of the compounds determined from the McCord-Fridovich experiment show dependence on structural features and reduction potentials.  相似文献   

11.
The self-assembly of a V-shaped ligand 3,3′,4,4′-diphenylsulfonetetracarboxylate (dstc) and metal salts in the presence of a series of N-donor ligands yielded four new complexes, namely, [Cu4(H2dstc)4(phen)4]·12H2O (1), {[Cu2(dstc)(bpe)(H2O)2]·4H2O}n (2), [Cu3(dstc)(bipy)(μ2-OH)2(H2O)2]n (3), {[Cd5(dstc)2(bipy)23-OH)2(H2O)4]·4H2O}n (4) (phen = 1,10-phenanthroline; bpe = 1,2-bis(4-pyridyl)ethene; bipy = 4,4′-bipyridine). All the complexes were structurally determined by single-crystal X-ray diffraction and characterized by elemental analyses, IR spectra, X-ray powder diffraction and TG analyses. Complex 1 is a discrete tetranuclear unit, which further assembles into a 3D supramolecular framework by intermolecular hydrogen bonding interactions. Complex 2 is composed of 2D 44 grid-like layers based on dinuclear copper units. Complex 3 features a rare 3D (6,8)-connected topological net consisting of trimetallic clusters. 12-connected pentanuclear cadmium clusters are observed in complex 4 and the resulting structure shows an uncommon (4,12)-connected topology. The structural differences among 1-4 demonstrate that the nature of the N-donor assistant ligands and metal ions can play critical roles in the formation and structures of the resulting complexes. Magnetic studies showed antiferromagnetic interactions for 1 and 3. In addition, the luminescent property of 4 was also studied.  相似文献   

12.
A new class of asymmetric N-capped (dianionic/trianionic) tripodal proligands [Hx(Ln)] (x = 2, n = 1-6; x = 3, n = 7, 8) which possess pendant arms with N2OS, N2S2 or NOS2 donor groups and with different chelate ring sizes {5,5,5} or {5,6,5} has been prepared. Treatment of these ligands with [WO2Cl2(dme)] (dme = 1,2-dimethoxyethane) in the presence of base (triethylamine or KOH) leads to the formation of cis-dioxotungsten(VI) complexes of the types [WO2(Ln)] (n = 1-6) and K[WO2(Ln)] (n = 7, 8). Reaction of these tetradentate ligands with [MoO2(acac)2] (acac = acetylacetonate) gives the corresponding Mo(VI) analogues [MoO2(Ln)] (n = 1-6) and K[MoO2(Ln)] (n = 7, 8). Moreover, a new five coordinate dioxomolybdenum(VI) complex with an NS2 tridentate ligand [MoO2(L9)] has been synthesised using similar procedure. All these compounds have been spectroscopically characterised and the molecular structures of [MoO2(Ln)] (n = 2, 6) and [WO2(L6)] have been established by X-ray diffraction analysis. The electrochemistry and the catalytic activity for oxidation of allylic and benzylic alcohols of these dioxo complexes have also been investigated.  相似文献   

13.
The most stable structures and electronic properties of TmSi n (n?=?3–10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n?+?1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n?=?3–10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n?=?3–10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.  相似文献   

14.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

15.
Calculations performed at the ab initio level using the recently reported planar concentric π-aromatic B18H6 2+(1) [Chen Q et al. (2011) Phys Chem Chem Phys 13:20620] as a building block suggest the possible existence of a new class of B3n H m polycyclic aromatic hydroboron (PAHB) clusters—B30H8(2), B39H9 2?(3), B42H10(4/5), B48H10(6), and B72H12(7)—which appear to be the inorganic analogs of the corresponding C n H m polycyclic aromatic hydrocarbon (PAHC) molecules naphthalene C10H8, phenalenyl anion C13H9 ?, phenanthrene/anthracene C14H10, pyrene C16H10, and coronene C24H12, respectively, in a universal atomic ratio of B:C?=?3:1. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), and electron localization function (ELF) analyses indicate that, as they are hydrogenated fragments of a boron snub sheet [Zope RR, Baruah T (2010) Chem Phys Lett 501:193], these PAHB clusters are aromatic in nature, and exhibit the formation of islands of both σ- and π-aromaticity. The predicted ionization potentials of PAHB neutrals and electron detachment energies of small PAHB monoanions should permit them to be characterized experimentally in the future. The results obtained in this work expand the domain of planar boron-based clusters to a region well beyond B20, and experimental syntheses of these snub B3n H m clusters through partial hydrogenation of the corresponding bare B3n may open up a new area of boron chemistry parallel to that of PAHCs in carbon chemistry.
Figure
Ab initio calculations predict the existence of polycyclic aromatic hydroboron clusters as fragments of a boron snub sheet; these clusters are analogs of polycyclic aromatic hydrocarbons  相似文献   

16.
Coordination polymers of [2.2]paracyclophane (pcp) with in situ silver(I) perfluoro-dicarboxylates characterized by single crystal X-ray analysis are described. Structures are found to strongly depend on the dicarboxylate spacer (n). With disilver(I) tetrafluorosuccinate ((CF2)n(COOAg)2, n = 2), 3D network with composition of [Ag4(pcp)(C2F4(CO2)2)2] (1) forms in which silver salts afford infinite double chains and pcp act as linkages between chains. Changing the silver salt to disilver hexafluoroglutarate ((CF2)n(COOAg)2, n = 3) produces 3D pillared-layer structure of composition of [Ag4(pcp)(C3F6(CO2)2)2] · THF (2) (THF = tetrahydrofuran), in which silver salts form 2D sheets and pcp act as pillars between the sheets. With silver octafluoroadipate (HO2C(CF2)nCO2Ag, n = 4), 2-fold interpenetrated diamond structure, [Ag2(pcp)2(HO2CC4F8CO2)2]2 · 2toluene (3), is obtained in which silver-anion chains and silver-pcp chains are connected with each other in the perpendicular manner. The three complexes represent unprecedented metal-organic networks of silver(I) multicarboxylates and polycyclic aromatic compounds. Additionally, the effects of the dicarboxylate conformations as well as the solvents on the resulting structures were discussed.  相似文献   

17.
The reaction of Ph3PO with LnCl3 · nH2O (Ln=La-Lu ≠ Pm) in a 3.5:1 ratio in acetone produces [LnCl3(Ph3PO)3], whilst from a 6:1 ratio in ethanol the products are [LnCl2(Ph3PO)4]Cl · n(solvate). In the presence of [NH4][PF6] in ethanol solution, [LnCl2(Ph3PO)4]PF6 can be isolated. The last complexes are stable in solution but the [LnCl3(Ph3PO)3] and [LnCl2(Ph3PO)4]Cl partially interconvert in non-coordinating solvents, the neutral species being preferred by the lighter lanthanides, the cationic tetrakis complexes becoming more favoured towards the end of the series. The complexes have been characterised in the solid state by analysis and IR spectroscopy and in solution by 31P{1H} NMR spectroscopy and conductance measurements. The crystal structures of trans-[LnCl2(Ph3PO)4]Cl · nEtOH (Ln=Tb or Yb) and mer-[LnCl3(Ph3PO)3] · 0.5Me2CO (Ln=La or Ce) are reported and discussed.  相似文献   

18.
Hybrid density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been carried out for ozone-water clusters O3(H2O)n (n = 1-4) in order to obtain hydration effects on the absorption spectrum of ozone. The first water molecule in n = 1 is bound to the ozone molecule by an oxygen orientation form in which the oxygen atom of H2O orients the central oxygen atom of O3. In n = 2, the water dimer is bound to O3 and then the cyclic structure is formed as the most stable structure. For n = 3 (or n = 4), the cyclic water trimer (or tetramer) is bound by a hydrogen bond to the ozone molecule. The TD-DFT calculations of O3(H2O)n (n = 0-4) show that the first and second excitation energies of O3 are blue-shifted by the interaction with the water clusters. The magnitude of the spectral shift is largest in n = 2, and the shifts of the excitation energies are +0.07 eV for S1 and +0.13 eV for S2 states. In addition to the spectral shifts (S1 and S2 states), it is suggested that a charge-transfer band is appeared as a low-lying excited state above the S1 and S2 states. The origin of the spectrum shifts was discussed on the basis of theoretical results.  相似文献   

19.
In this study, the classical molecular dynamics simulations in canonical ensemble conditions (NVT) were used to investigate the dynamical properties of trimetallic Pd–Pt–Ag nanoalloy clusters with the interatomic interactions modelled by the Gupta many-body potential. The optimisations for best homotops were performed using the basin-hopping algorithm for 55 atom icosahedral PdnAg(42-n)Pt13 trimetallic clusters. We performed optimisations to search the best chemical ordering of icosahedron structure not allowing any geometric changes. The icosahedron structures which are the best homotops have a core-shell segregation. The obtained icosahedral structures with best homotops were taken as the initial configurations for MD simulations. The temperature ranges were explored which the surface sites of the clusters stay thermally stable. We estimated the melting temperatures of PdnAg(42-n)Pt13 trimetallic clusters using caloric curves and Lindemann parameters. No simple correlation between alloy composition and melting temperatures was determined. The Pd35Ag7Pt13 composition has the highest melting temperature, however, the Pd21Ag21Pt13 is the most stable composition according to the relative stability investigation. The simulation results showed that the melting of all PdnAg(42-n)Pt13 clusters takes place as a whole without any surface premelting.  相似文献   

20.
The neutral PrSi n (n = 12–21) species considering various spin configurations were systematically studied using PBE0 and B3LYP schemes in combination with relativistic small-core potentials (ECP28MWB) for Pr atoms and cc-pVTZ basis set for Si atoms. The total energy, growth-pattern, equilibrium geometry, relative stability, hardness, charge transfer, and magnetic moments are calculated and discussed. The results reveal that when n < 20, the ground-state structure of PrSi n evaluated to be prolate clusters. Starting from n = 20, the ground-state structures of PrSi n are evaluated to be endohedral cagelike clusters. Although the relative stabilities based on various binding energies and different functional is different from each other, the consensus is that the PrSi13, PrSi16, PrSi18, and PrSi20 are more stable than the others, especially the PrSi20. Analyses of hardness show that introducing Pr into Si n (n = 12–21) elevates the photochemical sensitivity, especially for PrSi20. Calculated result of magnetic moment and charge transfer shows that the 4f electrons of Pr in the clusters are changed, especially in endohedral structures such as PrSi20, in which one electron transfers from 4f to 5d orbital. That is, the 4f electron of Pr in the clusters participates in bonding. The way to participate in bonding is that a 4f electron transfers to 5d orbital. Although the 4f electron of Pr atom participates in bonding, the total magnetic moment of PrSi n is equal to that of isolated Pr atom. The charge always transfers from Pr atom to Si n cluster for the ground state structures of PrSin (n = 12–19), but charge transfer is reverse for n ≥ 20. The largest charge transfer for endohedral structure reveals that the bonding between Pr and Si n is ionic in nature and very strong. The fullerenelike structure of PrSi20 is the most stable among all of these clusters and can act as the building blocks for novel functional nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号