首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To clarify when the cholinergic receptor-mediated secretion mechanism of developing adrenal chromaffin cells is expressed and becomes functional, morphological changes and intracellular calcium dynamics were studied by immunohistochemistry, electron microscopy, and Fura-2 digital image analysis. From embryonic day 14 to 16, adrenal medullary cells were immunoreactive to noradrenaline-synthesizing enzyme (dopamine β-hydroxylase) but not to adrenaline-synthesizing enzyme (phenylethanolamine N-methyltransferase). These cells contained either no granules or just a few granules of high electron density. Exocytotic figures were rarely observed in cells of the control or in cells after carbamylcholine stimulation. Nerve fibers in the adrenal medulla contained either no clear vesicles or very few. Neither methacholine nor nicotine caused a change of intracellular Ca2+ in most chromaffin cells. From embryonic day 18 to 20, chromaffin cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase and they contained relatively numerous secretory granules. Exocytotic figures were often seen in cells after carbamylcholine stimulation. The intra-adrenal nerve fibers contained numerous clear vesicles and a few dense-cored vesicles. Methacholine caused no rise of intracellular Ca2+, but nicotine induced a low to relatively high rise in many cells. From postnatal day 2 or 3 to postnatal week 1, numerous cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase, whereas some cells were reactive to dopamine β-hydroxylase alone. Chromaffin cells were divisible into noradrenaline cells and adrenaline cells based on the ultrastructural features of their granules. Methacholine induced a moderate rise of intracellular Ca2+ and nicotine caused a high rise in many chromaffin cells, whereas, in some chromaffin cells, methacholine induced no rise of intracellular Ca2+ and nicotine induced a high rise. These results suggest that morphological changes of the developing cells and the intra-adrenal nerve fibers are related to the expression of a cholinergic receptor-mediated secretion mechanism and that this mechanism via a nicotinic receptor-mediated Ca2+ signaling pathway precedes the muscarinic receptor-mediated one during development.  相似文献   

2.
Treatment of bovine chromaffin cells with insulin-like growth factor-I (IGF-I) caused the activation of a protein kinase that phosphorylates microtubule-associated protein-2 (MAP-2) in vitro. Activation of MAP-2 kinase by IGF-I varied with the time of treatment (maximal at 10-15 min) and the concentration of IGF-I (maximal at 10 nM). The IGF-I-activated MAP-2 kinase was localized to the soluble fraction of chromaffin cell extracts and required Mg2+ for activity. The IGF-I-activated kinase also phosphorylated myelin basic protein, but had little or no activity toward histones or ribosomal S6 protein. To examine the role of protein tyrosine phosphorylation in the activation of the MAP-2 kinase, we isolated phosphotyrosine (PTyr)-containing proteins from chromaffin cells by immunoaffinity adsorption on anti-PTyr-Sepharose beads. Anti-PTyr-Sepharose eluates from IGF-I-treated cells showed increased MAP-2 kinase activity; thus, the MAP-2 kinase (or a closely associated protein) appears to be a PTyr-containing protein. Treatment of anti-PTyr-Sepharose eluates or crude chromaffin cell extracts with alkaline phosphatase significantly decreased kinase activity toward myelin basic protein, indicating that phosphorylation of the IGF-I-activated kinase is required for its activity.  相似文献   

3.
The existence of paracrine control of steroidogenic activity by adrenochromaffin cells in Triturus carnifex was investigated by in vivo noradrenaline (NA) administration. The effects were evaluated by examination of the ultrastructural morphological and morphometrical features of the tissues as well as the serum levels of aldosterone, NA, and adrenaline (A). In March and July, NA administration increased aldosterone release (from 187.23 +/- 2.93 pg/ml to 878.31 +/- 6.13 pg/ml in March; from 314.60 +/- 1.34 pg/ml to 622.51 +/- 2.65 pg/ml in July) from steroidogenic cells. The cells showed clear signs of stimulation, as evidenced by a strong reduction of lipid content. Moreover, NA administration decreased the mean total number of secretory vesicles in the chromaffin cells in March (from 7.24 +/- 0.18 granules/micro2 to 5.57 +/- 1.88 granules/micro2) and July (from 7.74 +/- 0.74 granules/micro2 to 6.04 +/- 1.13 granules/micro2). In March, however, when T. carnifex chromaffin cells contain both catecholamines, NA (3.88 +/- 0.13 granules/micro2) and A (3.36 +/- 0.05 granules/micro2) in almost equal quantities, NA administration reduced A content (1.29 +/- 1.04 granules/micro2) in the chromaffin cells, enhancing adrenaline secretion (from 681.27 +/- 1.83 pg/ml to 1527.02 +/- 2.11 pg/ml). In July, when the chromaffin cells contain almost exclusively NA granules (NA: 7.42 +/- 0.86 granules/micro2; A: 0.32 +/- 0.13 granules/micro2), NA administration reduced the number of NA granules (5.45 +/- 1.10 granules/micro2), thereby increasing noradrenaline release from the chromaffin cells (from 640.19 +/- 1.65 pg/ml to 1217.0 +/- 1.14 pg/ml). The results of this study indicate that NA influences the steroidogenic cells, eliciting aldosterone release. Noradrenalin effects on the chromaffin cells, increase of NA or A secretion, according to the period of chromaffin cell functional cycle, may be direct and/or mediated through the steroidogenic cells. The existence of intra-adrenal paracrine interactions in T. carnifex is discussed.  相似文献   

4.
Summary The adrenal medulla appears to exert a regulatory influence on adrenocortical steroidogenesis. We have therefore studied the morphology of rat, porcine and bovine adrenals in order to characterize the contact zones of adrenomedullary and adrenocortical tissues. The distribution of chromaffin cells located within the adrenal cortex and of cortical cells located within the adrenal medulla was investigated. Chromaffin cells were characterized by immunostaining for synaptophysin and chromogranin A, both being considered specific for neuroendocrine cells. Cortical cells were characterized by immunostaining for 17-hydroxylase, an enzyme of the steroid pathway. Cellular contacts of chromaffin cells and cortical cells were examined at the electron microscopical level. In rat and porcine adrenals, rays of chromaffin cells, small cell clusters and single chromaffin cells or small invaginations from the medulla could be detected in all three zones of the cortex. Chromaffin cells often spread in the subcapsular space of the zona glomerulosa. In porcine and bovine adrenals, 17-hydroxylase immunoreactive cells were localized within the medulla. Single cortical cells and small accumulations of cells were spread throughout this region. At the ultrastructural level, the chromaffin cells located within the cortex in pig and rat adrenals formed close cellular contacts with cortical cells in all three zones. Our morphological data provide evidence for a possible paracrine role of chromaffin cells; this may be important for the neuroregulation of the adrenal cortex.  相似文献   

5.
Cognate interactions between T and B lymphocytes lead to the formation of the immunological synapse (IS) where bidirectional activation signals are exchanged. Although the molecular architecture and the function of the IS have been studied extensively on the T cell side, little is known about events occurring during synapse formation in Ag-presenting B cells. We investigated the impact of BCR and TLR signaling on human B cell activation and on the T and B cell side of the IS. On the T cell side, we observed that T cells polarized toward both naive and previously activated B cells. Nevertheless, when T cells interacted with different B cells simultaneously, T cells selectively polarized their secretory machinery toward preactivated B cells. Furthermore, both naive and preactivated B cells reoriented their microtubule-organizing center toward the synaptic T cell during cognate interactions. This phenomenon was rapid and not dependent on T cell secretory activity. Interestingly, not only the microtubule-organizing center but also the Golgi apparatus and Lamp-3(+) and MHC class II(+) vesicles all repositioned beneath the IS, suggesting that the entire endocytic/exocytic B cell compartment was reoriented toward the T cell. Taken together, our results show that the B cell activation status fine-tunes T cell polarization responses and reveal the capacity of naive and activated B cells to polarize toward T cells during cognate interactions.  相似文献   

6.
The determination of the adrenal medullary cell fate during embryogenesis   总被引:4,自引:0,他引:4  
One subset of neural crest cells, the sympathoadrenal precursors, undergoes a switch in phenotype expression, when they invade the adrenal anlagen and become associated with adrenocortical cells. To investigate the mechanisms responsible for the conversion of noradrenaline synthesizing precursors to adrenaline producing endocrine chromaffin cells we studied the role of glucocorticoids on the initial induction of adrenaline synthesis in embryonic adrenals and cultures of highly purified chromaffin precursor cells. We could show that in vivo differentiation of rat chromaffin precursors commences between 16.3 and 17.3 days of gestation. While adrenaline and the activity of the enzyme phenylethanolamine N-methyltransferase (PNMT), which converts noradrenaline to adrenaline, were present at Embryonic Day 17.3 (E17.3), they were not detectable in E16.3 adrenals. Small amounts of corticosterone were present in E16.3 adrenals and plasma, but in parallel with the initial induction of adrenaline biosynthesis, a sharp rise in organ and plasma glucocorticoid levels occurred until E17.3. Chromaffin precursor cells, isolated at E16.3 and cultured for 4 days, failed to express PNMT activity and adrenaline. However, 0.1 nM dexamethasone was already sufficient for the initial induction of adrenaline and its synthesizing enzyme. Specific glucocorticoid binding of freshly isolated chromaffin (precursor) cells revealed a developmental increase during embryogenesis, yet no glucocorticoid binding sites were detectable in chromaffin precursor cells at E16.3. They appeared at E17.3 in parallel with the initial induction of adrenaline biosynthesis and the enormous rise of adrenal and plasma corticosterone levels. We therefore conclude that glucocorticoids are essential and sufficient to trigger the differentiation of noradrenergic sympathoadrenal precursors to adrenergic chromaffin cells after a functional glucocorticoid receptor system has been established.  相似文献   

7.
8.
The effects of the prolonged infusion with interleukin-1 beta (IL-1 beta) (20 pM.kg-1.min-1) on the function and morphology of the isolated inner cells of the rat adrenal cortex were investigated. After 3 and 5 days of IL-1 beta infusion, the level of circulating ACTH was below the control level, while the plasma concentration of corticosterone was strikingly elevated. After 5 days of infusion, isolated inner adrenocortical cells showed an enhanced basal and ACTH-stimulated corticosterone secretion, and showed a conspicuous hypertrophy. The acute exposure to IL-1 beta 10(-6) M did not affect the secretory activity of dispersed cell from either control or IL-1 beta-infused rats. These findings indicate that the prolonged exposure to high levels of circulating IL-1 beta, like those occurring during chronic inflammatory diseases, is able to enhance the growth and steroidogenic (glucocorticoid) capacity of the rat inner adrenocortical zones. Moreover, they suggest that the mechanism underlying this adrenocorticotrophic effect of IL-1 beta does not involve either a stimulation of the hypophyseal ACTH release or a direct stimulatory effect of monokine on adrenocortical cells. It is suggested that IL-1 beta may activate an intra-adrenal paracrine regulatory mechanism.  相似文献   

9.
The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell activation through coculture with T cells activated by anti-T-cell receptor or anti-CD3 antibodies suggest that cellular interaction with T cells, independent of antigen presentation or lymphokine secretion, induces or triggers B cells to become responsive to T-derived lymphokines, and that this may be an integral component of the physiological, antigen- and MHC-restricted T-dependent B cell activation that leads to antibody production.  相似文献   

10.
The interactions between nerve fibres from para- and orthosympathetic ganglia and adreno-cortical and -medullary cells were studied in joint cultures using explanted guinea-pig ciliary and sympathetic chain ganglia and enzyme-dispersed rat adrenal gland cells. Nerve fibres from both para- and orthosympathetic ganglia made only transitory contact with cortical cells, but consistently formed associations with isolated chromaffin cells which lasted for up to 10 days. Contacts between axons and chromaffin cells often showed particularly large varicosities and frequently withstood severe tests of durability from pulls of the fibre or the cell or both. By correlating phase contrast and catecholamine histochemistry (Falck-Hillarp method) it was shown that sympathetic fibres forming long-lasting contacts with chromaffin cells were adrenergic. The functional implications of the ability of autonomic nerves to distinguish between adreno-cortical and -medullary cells and the lack of specificity shown by the para- and orthosympathetic neurons during formation of long-lasting associations with chromaffin cells are discussed.  相似文献   

11.
We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

12.
Summary We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

13.
Cofilin is one of the major actin depolymerizing proteins in eukaryotic cells and involved in many membrane modulating activities, such as cell growth and motility. Here we examined whether cofilin is activated upon Ca(2+) regulated noradrenalin secretion from bovine adrenal chromaffin cells. We found that triggering exocytosis by nicotine causes a dephosphorylation and thereby activation of cofilin. Furthermore, in permeabilized chromaffin cells the addition of Ca(2+) alone is sufficient to trigger both, regulated exocytosis and cofilin activation. This is consistent with cofilin activation being required for actin reorganization during exocytosis.  相似文献   

14.
Our results provide evidence that 6-hydroxydopamine induced, after auto-oxidation, toxic levels of hydrogen peroxide (H2O2) that caused bovine chromaffin cell toxicity and death. 6-Hydroxydopamine (6-OHDA) treatment markedly reduced, in a dose-response fashion, chromaffin cell viability. Cell death was accompanied by cell shrinkage, nuclear condensation and DNA degradation. Under our experimental conditions, 6-OHDA auto-oxidation formed quinones and reactive oxygen species (ROS) that mainly contributed to 6-OHDA-induced cytotoxicity in bovine chromaffin cells. Accordingly, different antioxidants, including catalase, vitamin E, Mn(IIItetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) or ascorbic acid, provided protection against 6-OHDA-induced toxicity. Further evidence that 6-OHDA induces oxidative stress is provided by the fact that this compound decreased total mitochondrial reduced NAD(P)H levels. Our results also suggest that mitochondrial swelling and caspase activation do not play a direct role in 6-OHDA-induced death in bovine chromaffin cells.  相似文献   

15.
Sex steroids affect adrenal chromaffin cell function. In the present work, we have examined the expression and functional significance of membrane androgen receptor sites in normal rat adrenal chromaffin cells and in the PC12 rat pheochromocytoma cell line which can differentiate to either a neuronal or to an epithelial phenotype and expresses membrane estrogen receptor sites. Our data are as follows: (a) no cytosolic androgen receptors were found in both normal chromaffin and PC12 cells; (b) both types of chromaffin cells expressed high affinity membrane testosterone binding sites; (c) activation of these sites increased cytosolic Ca2+, decreased catecholamine secretion and induced apoptosis; (d) NGF-induced neuronal differentiation of PC12 cells resulted in the suppression of the number of membrane testosterone sites. In conclusion, our data provide evidence for the existence of specific membrane testosterone receptors on adrenal chromaffin cells via which androgens, (some of them originating in the cortex) modulate their function. Neuronal differentiation of chromaffin cells results in a significant attenuation of these effects, via suppression of the expression of membrane androgen receptors suggesting, that the latter are specific for epithelioid chromaffin cells.  相似文献   

16.
We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, aromatic amino acid decarboxylase, and acetylcholinesterase) are not increased. The effect of laminin can be blocked by antibodies directed against a fragment of the heparin-binding domain of the molecule, whereas antibodies directed against other fragments do not block the increase in tyrosine hydroxylase. Thus the laminin domain involved in enzyme regulation in chromaffin cells is apparently the same as that previously implicated in laminin's interactions with neurons to potentiate survival and stimulate neurite outgrowth (Edgar, D., R. Timpl, and H. Thoenen, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1463-1468). The increase in chromaffin cell tyrosine hydroxylase levels is preceded by an activation of the enzyme in which the Vmax (but not the Km) is altered. The effects of laminin appear to be developmentally regulated, since neither activation nor increased levels of tyrosine hydroxylase occur in adult adrenal chromaffin cells exposed to laminin.  相似文献   

17.
Morphometric characteristics of adrenal medulla were analysed stereologically in adult male rats injected with a single dose of ethane dimethanesulphonate (EDS), an agent that causes atrophy of the inner adrenocortical zone, or vehicle, and subjected to isoproterenol (ISO) or propranolol (PROP) treatment over the following 15 days. Compared with dimethylsulphoxide (DMSO) vehicle-injected controls, in EDS-administered rats the volume of chromaffin cell nuclei was decreased. ISO treatment in these rats increased the volumes of chromaffin cells and their nuclei. Furthermore, in both EDS- and vehicle-injected rats ISO significantly enlarged the total volume of medullary blood vessels, suggesting a vasodilatatory effect of β-adrenoceptor stimulation. However, unexpectedly, in EDS-injected rats PROP treatment also caused an increase in the volumes of chromaffin cells and their nuclei. This finding, most likely, may be related to a non-β-adrenoceptor-related action of PROP. Collectively, the present results suggest that the response of adrenomedullary chromaffin cells to chronic ISO-induced β-adrenoceptor stimulation is dependent on the functional status of adrenal cortex, so that the stereologically detectable changes were found only in rats previously exposed to the destructive action of EDS on the adrenal gland cortical cells. Moreover, they indicate that ISO treatment exerts a reversing effect on the morphometrical changes of chromaffine cells induced by EDS administration.  相似文献   

18.
Immunofluorescence and cytochemical studies have demonstrated that filamentous actin is mainly localized in the cortical surface of the chromaffin cell. It has been suggested that these actin filament networks act as a barrier to the secretory granules, impeding their contact with the plasma membrane. Stimulation of chromaffin cells produces a disassembly of actin filament networks, implying the removal of the barrier. The presence of gelsolin and scinderin, two Ca(2+)-dependent actin filament severing proteins, in the cortical surface of the chromaffin cells, suggests the possibility that cell stimulation brings about activation of one or more actin filament severing proteins with the consequent disruption of actin networks. Therefore, biochemical studies and fluorescence microscopy experiments with scinderin and gelsolin antibodies and rhodamine-phalloidin, a probe for filamentous actin, were performed in cultured chromaffin cells to study the distribution of scinderin, gelsolin, and filamentous actin during cell stimulation and to correlate the possible changes with catecholamine secretion. Here we report that during nicotinic stimulation or K(+)-evoked depolarization, subcortical scinderin but not gelsolin is redistributed and that this redistribution precedes catecholamine secretion. The rearrangement of scinderin in patches is mediated by nicotinic receptors. Cell stimulation produces similar patterns of distribution of scinderin and filamentous actin. However, after the removal of the stimulus, the recovery of scinderin cortical pattern of distribution is faster than F-actin reassembly, suggesting that scinderin is bound in the cortical region of the cell to a component other than F-actin. We also demonstrate that peripheral actin filament disassembly and subplasmalemmal scinderin redistribution are calcium-dependent events. Moreover, experiments with an antibody against dopamine-beta-hydroxylase suggest that exocytosis sites are preferentially localized to areas of F-actin disassembly.  相似文献   

19.
Immunohistochemical investigation of the post-translational processing of chromogranin A (CgA) to generate WE-14 in the sympathoadrenal cell lineage of the developing porcine fetus (F) detected intense CgA and weak WE-14 immunoreactivity in migrating neuroblast cells of the diffuse sympathetic ganglia adjacent to the dorsal aorta and projecting toward the cortical mass at F24-27. F37-42; WE-14 immunoreactivity was detected in chromaffinoblasts at the periphery of the developing cortex and at F54-56 days gestation WE-14 immunoreactivity was detected in a large population of central medullary cells. From F74 to F76 days and thereafter the number of cells exhibiting intense WE-14 immunostaining decreased, and the majority of chromaffin cells exhibited uniform weak WE-14 immunostaining. At postnatal day 1 (P1) intense WE-14 immunoreactivity was primarily confined to clusters of chromaffin cells with weak immunostaining in the general population. The transitory neuroblasts, chromaffinoblasts, and maturing chromaffin cell population exhibited uniform intense CgA immunostaining through gestation and after birth. Additional observations detected intense CgA and WE-14 immunostaining in extrachromaffin tissue at P1 and in neuronal-like cells in vessels of the aortic arch at F37. This study has demonstrated that CgA is post-translationally processed to generate WE-14 during early fetal development in the migrating progenitor cells of the porcine sympathoadrenal lineage.  相似文献   

20.
It has been previously reported that Ia Ag on APC seems to be involved in Ag-specific T cell activation in at least two different ways: one is to associate with foreign Ag to form a neoantigenic determinant (the Ag-specific Ia function), and the second is to interact with T cells in a non-Ag-specific manner. Both Ia functions are required for T cell activation. In the present study we examined whether the T cell structures responsible for the non-Ag-specific Ia interaction were separable from the Ag-specific alpha/beta TCR. Purified protein derivative of tuberculin (PPD)-specific murine hybridoma T cells and polyclonal lymph node T cells were stimulated for IL-2 production by APC pulsed with PPD, glutaraldehyde fixed, and anti-Ia antibody treated, to provide the antigenic PPD/Ia determinant, in the presence of glutaraldehyde-fixed non-Ag-pulsed APC, to provide the non-Ag-specific Ia interactions. However, in several different approaches the T cell structures or activation signals responsible for the Ag-specific recognition and non-Ag-specific Ia interactions seemed to be associated with each other in this experimental system. First, the Ag-specific and non-Ag-specific Ia interactions with T cells were both required simultaneously to initiate T cell activation, and it was not possible to activate T cells by providing either Ia signal subsequent to the other. Second, the T cell structures responsible for the non-Ag-specific Ia interactions appeared to be clonally distributed in PPD-specific lymph node T cells. Third, another T cell hybridoma specific for bovine insulin also showed dual Ia interactions, but the specificity of the non-Ag-specific Ia function was different than that for the PPD-specific T cell response. Fourth, all subclones of PPD-specific T hybridomas that had lost Ag-specific responsiveness also lost functional non-Ag-specific Ia interactions. Taken together, these observations suggest that a single species of TCR may mediate both the Ag-specific and non-Ag-specific Ia interactions. In addition, the non-Ag-specific Ia interaction with T cells augmented the Ag-specific Ia interaction for T cell activation, indicating that both types of interactions may be involved in some T cell responses. Based on these observations, a Velcromodel depicting the synergy between the two Ia functions is proposed in which a matrix of interactions consisting of higher affinity Ag binding and lower affinity Ia-TCR associations provides cooperative sets of signals necessary for cellular activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号