首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The architecture of 5S rRNA and its relation to function   总被引:4,自引:0,他引:4  
An extensive comparative analysis of the available primary sequence data on 5S rRNA has been made. A universal secondary structure is presented for procaryotic 5S rRNA which contains four helical regions. Eucaryotic 5S rRNAs are found to have only three of these helices and thus have a somewhat different architecture. In addition, a highly conserved segment of more than thirty nucleotides is identified in the 5' half of the procaryotic molecule. This segment includes the oligonucleotide -CGAAC- which presumably binds to the t-RNA "common" sequence -GTpsiCG-. Among the eucaryotes, the plants display a procaryotic nature in this region, but no eucaryote has the sequence -CGAAC- in this segment. A functional role for the procaryotic 5S rRNA molecule is discussed in which it is envisioned to undergo conformational change, i.e., coiling and uncoiling of one of the helices, which can result in a cyclic interaction of the 5S rRNA molecule with two t-RNA molecules. A general principle also emerges: the natural rotational motion inherent in coiling and uncoiling of nucleic acid helices can be converted quite simply to linear mechanical motion.  相似文献   

2.
Hicks JM  Hsu VL 《Proteins》2004,55(2):330-338
The poly-proline type II extended left-handed helical structure is well represented in proteins. In an effort to determine the helix's role in nucleic acid recognition and binding, a survey of 258 nucleic acid-binding protein structures from the Protein Data Bank was conducted. Results indicate that left-handed helices are commonly found at the nucleic acid interfacial regions. Three examples are used to illustrate the utility of this structural element as a recognition motif. The third K homology domain of NOVA-2, the Epstein-Barr nuclear antigen-1, and the Drosophila paired protein homeodomain all contain left-handed helices involved in nucleic acid interactions. In each structure, these helices were previously unidentified as left-handed helices by secondary structure algorithms but, rather, were identified as either having small amounts of hydrogen bond patterns to the rest of the protein or as being "unstructured." Proposed mechanisms for nucleic acid interactions by the extended left-handed helix include both nonspecific and specific recognition. The observed interactions indicate that this secondary structure utilizes an increase in protein backbone exposure for nucleic acid recognition. Both main-chain and side-chain atoms are involved in specific and nonspecific hydrogen bonding to nucleobases or sugar-phosphates, respectively. Our results emphasize the need to classify the left-handed helix as a viable nucleic acid recognition and binding motif, similar to previously identified motifs such as the helix-turn-helix, zinc fingers, leucine zippers, and others.  相似文献   

3.
Mutagenesis of the hairpin ribozyme.   总被引:6,自引:1,他引:5       下载免费PDF全文
Extensive in vitro mutagenesis studies have been performed on the hairpin ribozyme and substrate in an effort to refine the overall secondary structure of the molecule and provide further insight into what elements are essential for activity. A secondary structure consisting of four helices and five loop regions remains the basic model as originally proposed. Two helices, helix 1 and 2, form between the substrate and ribozyme while helices 3 and 4 are within the ribozyme itself. Our results suggest that helices 3 and 4 are smaller than previously proposed, consisting of four base pairs and three base pairs respectively. Helix 4 can be extended without loss of activity and loop 3 at the closed end of the hairpin model can be varied in sequence with retention of activity. There is an unpaired nucleotide between helices 2 and 3 consisting of a single A base, suggesting the opportunity for flexibility within the tertiary structure at this point. Comparisons are made between the new data and previously published mutagenesis and phylogenetic data. Substrate targeting rules require base pairing between helices 1 and 2 with cleavage (*) occurring in a preferred 5'(g/c/u)n*guc3' sequence of the substrate.  相似文献   

4.
Abstract

Except for tRNA, the tertiary structure of RNA molecules are very little known. The many possibilities in the arrangement of different helices in space and the flexibility in the single- stranded loops that connect the helical regions make the modeling of the tertiary structure of RNA molecule a very complex task. Here, we introduce an approach to fold RNA tertiary structure based only on the information of the secondary structure and the stereochemistry of the molecule. This approach was used to construct an atomic structure of a pseudoknot (bases 500–545) in the E. coli 16S RNA. The resulting structure is a closely packed molecule that is consistent with the predicted secondary structure and stereochemically feasible. This new approach is very general and easily adaptable. Experimental data (e.g., NMR, fluorescence energy transfer, etc.), as they become available, can be incorporated directly into the approach to improve the accuracy of the modeled structure.  相似文献   

5.
6.
Abstract

A simple statistical model describing the folding of nucleic acids is proposed. For long sequences the real configuration of the secondary structure is a quasi equilibrium state that cannot be characterised by minimal free energy. This is because the time required to achieve complete thermal equilibrium considerably exceeds the life-time of the molecule. The formation of the secondary structure is represented as a random walk process in the space of all possible molecular configurations. TTie quasi equilibrium structure is obtained by successive linking and disruptions of helix segments with probabilities determined by the rate constants of corresponding unimolecular reactions. The probabilities of configurations consisting of all possible compatible helices are calculated. Structures of some t - RNAs and ribosomal RNAs are analysed.  相似文献   

7.
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.  相似文献   

8.
Current developments in nanosciences indicate that the self-assembly of macromolecules, such as proteins or metallic nanoclusters, can be conveniently achieved by means of nucleic acid hybridization. Within this context, we here report on the evaluation of single-stranded nucleic acids to be utilized as carrier backbones in DNA-directed self-assembly. A microplate solid-phase hybridization assay is described which allows rapid experimental determination of the hybridization efficiencies of various sequence stretches within a given nucleic acid carrier strand. As demonstrated for two DNA fragments of different sequence, the binding efficiencies of several oligonucleotides depend on the formation of specific secondary structure elements within the carrier molecule. A correlation of sequence-specific hybridization capability with modeled secondary structure is also obvious from experiments using the fluorescence gel-shift analysis. Electrophoretic studies on the employment of helper oligonucleotides in the formation of supramolecular conjugates of several oligonucleotide-tagged proteins indicate, that structural constraints can be minimized by disruption of intramolecular secondary structures of the carrier molecule. To estimate the influences of the chemical nature of the carrier, gel-shift experiments are carried out to compare a 170mer RNA molecule with its DNA analogue. Ternary aggregates, containing two protein components bound to the carrier, are formed with a greater efficiency on the DNA instead of the RNA carrier backbone.  相似文献   

9.
Current secondary structure prediction computations have a seriousdrawback. The calculated thermodynamically most stable structureoften differs from that observed in solution or in crystal form.In this paper we suggest a way to partially overcome some ofthese limitations by simulating the RNA folding process andcalculating the frequencies of occurrence of the various substructuresobtained. The frequently recurring substructures are then selectedto construct the secondary structure of the whole RNA. 142 tRNAmolecules and an E. coli 16S rRNA molecule have been examinedby this method. The percentages of successful prediction ofthe correct helices are significantly higher than those calculatedpreviously. The secondary structures of intervening sequences(IVSs) excised from human -like globin pre-mRNAs are also computed.Thus, in this method the secondary structures obtained are composedof the statistically more significant substructures. This hasalso been demonstrated by using randomly shuffled sequences.The secondary structures of each of the randomized sequencesare computed and their mean and standard deviations are usedin evaluating the significance of the substructures obtainedin the folding of the biological sequence. Some potentiallyappealing structural features aligning adjacent exons for ligationhave been found. Received on April 3, 1987; accepted on October 18, 1987  相似文献   

10.
Shpakov AO 《Tsitologiia》1999,41(8):667-674
The helices with heptad regularity in C1 and C2 cytoplasmic domains of membrane-bound adenylyl cyclases (AC) of mammals were identified. The most helices were localized in N-terminal and central regions of high conservative C1a and C2a subdomains of AC. The regions are responsible for regulation of enzyme functional activity. The amino acid regions, corresponding to these helices, were homologous to G-protein beta and gamma subunit regions, which participate in coupling with alpha subunits and in forming the heterotrimeric alpha beta gamma complex. The similarity was found both primary and secondary structure levels. On the basis of obtained data the next supposition was made. The regular helices of C1a and C2a subdomains of AC can interact with G protein alpha-helices the by coiled-coil mechanism and thus regulate the AC catalytic activity. Additionally, the regular helices were identified in variable C1b and C2b subdomains of several AC types (in particular, I and III types). Some of the helices are similar in the secondary structure level to amphipatic helices of bacterial AC, which participate in calmodulin binding, and can carry out also the calmodulin-binding function.  相似文献   

11.
The Tetrahymena 5.8S rRNA is 154 nucleotides long, the shortest so far reported except for the split 5.8S rRNAs of Diptera (m5.8S plus 2S rRNA). In this molecule several nucleotides are deleted in the helix e (GC-rich stem) region. Upon constructing the secondary structure in accordance with "burp-gun" model, the Tetrahymena 5.8S rRNA forms a wide-open "muzzle" of the terminal regions due to both extra nucleotides and several unpaired bases. The aphid 5.8S rRNA consists of 161 nucleotides and can form stable helices in both terminal and helix e regions. As a whole, the secondary structure of Tetrahymena 5.8S rRNA resembles that of Bombyx 5.8S molecule while the aphid 5.8S rRNA shares several structural features with the HeLa 5.8S molecule. Likely, the 5.8S rRNA attached to the 28S rRNA with the hidden break differs in structure from those interacting with the 28S partners without the break. Nucleotide sequences of 5.8S rRNA in insects as well as in protozoans are not so conservative evolutionarily as in vertebrates.  相似文献   

12.
Double helices, since the discovery of the DNA structure by Watson and Crick, represent the single most important secondary structural form of nucleic acids. The secondary structures of a variety of polynucleotide helices have now been well characterised with hydrogen-bonded base-pairs as building blocks. We wish to propose here the possibility, in a specific case, of a double stranded helical structure without any base-pair, but having a repeat unit of two nucleotides with their bases stacked through intercalation. The proposal comes from the initial models we have built for poly(dC) using the stacking patterns found in the crystal structures of 5'-dCMPNa2 which crystallises in two forms depending on the degree of hydration. These structures have pairs of nucleotides with the cytosine rings partially overlapping and separated by 3.3A. Using these as repeat units one could generate a model for poly(dC) with parallel strands, having a turn angle of 30 degrees and a base separation of 6.6A along each strand. Both right and left handed models with these parameters can be built in a smooth fashion without any obviously unreasonable stereochemical contacts. The helix diameter is about 13.5A, much smaller than that of normal helices with base-pair repeats. The changes in the sugar-phosphate backbone conformation in the present models compared to normal duplexes only reflect the torsional flexibility available for extension of polynucleotide chains as manifested by the crystal structures of drug-inserted oligonucleotide complexes. Intercalation proposed here could have some structural relevance elsewhere, for instance to the base-mismatched regions on the double helix and the packing of noncomplementary single strands as found in the filamentous bacteriophage Pf1.  相似文献   

13.
The basic assumption in this paper is that the secondary structure of a 5-S ribosomal RNA cannot be represented by a single model. We propose that the molecule can adopt, at least within the ribosome, a series of slightly different structures of nearly equal stability. The different structures arise from the existence of ambiguous base-pairing opportunities in bulged helices and the adjacent interior loops. In eubacterial 5-S RNAs there is one such an area, in eukaryotic 5-S RNAs two such areas that can give rise to structural switches. We explain how a change in secondary structure in these areas may influence the relative orientation of the surrounding helices, in other words how bulges and interior loops may serve as articulations and give rise to a flexible tertiary structure.  相似文献   

14.
The secondary structure of highly purified ovalbumin mRNA was studied by automated thermal denaturation techniques and the data were subjected to computer processing. Comparative studies with 20 natural and synthetic model nucleic acids suggested that the secondary structure of ovalbumin mRNA possesses the following features: the extent of base pairing of ovalbumin mRNA is similar to that found in tRNAs or ribosomal RNAs; the secondary structure of ovalbumin mRNA is more thermolabile than any of the model compounds tested, including the copolymer poly(A-U); ovalbumin mRNA does not have extensive G-C rich stems as found in tRNAs or ribosomal RNAs; the base composition of the double-stranded regions reveals 54% G-C residues which was significantly higher than that noted in the whole molecule (approximately 41.5% G-C). The presence of 46% A-U pairs in short stems of about five base pairs would have a very large destabilizing effect on the secondary structure of ovalbumin mRNA. However, at 0.175 M monovalent cations and 36 degrees C most of the secondary structure of ovalbumin mRNA is preserved. These data suggest that the double-stranded regions in ovalbumin mRNA are of sufficient length to provide the necessary stability for maintaining the open loop regions in an appropriate conformation which may be required for the biological function of ovalbumin mRNA. Furthermore, the lability of the double-stranded regions in ovalbumin mRNA may also be important for the biological function of this mRNA.  相似文献   

15.
 Magarshak et al. represented an RNA molecule as a complex vector and an RNA secondary structure Γ as a complex matrix S Γ in such a way that the molecule represented by was compatible with the secondary structure Γ if and only if . They only considered Watson-Crick base pairs and their representation cannot be extended to allow for GU pairs. In this paper we study a generalization of Magarshak's representation that allows for these pairs, and in particular we provide a family of algebraic structures where that generalization can be carried out. We also show that this representation can be used to compare secondary structures, through transfer matrices which transform the representation of one secondary structure into the representation of the other. Received: 10 December 2001 / Revised version: 7 May 2002 / Published online: 28 February 2003 Key words or phrases: RNA secondary structure – Algebra – Finite field  相似文献   

16.
A collective secondary structure prediction for the human erythrocyte spectrin 106-residue repeat segment is developed, based on the sequences of nine segments that have been reported in the literature, utilizing a consensus of several secondary structure prediction methods for locating turn regions. The analysis predicts a five-fold structure, with three alpha-helices and two beta-strand regions, and differs from previous models on the lengths of the helices and the existence of beta-strand structure. We also demonstrate that this structural motif can be folded into tertiary structures that satisfy the experimental spectrin data and several general principles of protein organization.  相似文献   

17.
The secondary structure of [32P] end-labeled 5S rRNA from Tetrahymena thermophilia (strain B) has been investigated using the enzymes S1 nuclease, cobra venom ribonuclease and T2 ribonuclease. The results, analyzed by scanning microdensitometry and illustrated by three-dimensional computer graphics, support the secondary structure model of Curtiss and Vournakis for 5S rRNA. Aberrent mobility of certain RNA fragments on sequencing gels was observed as regions of band compression. These regions are postulated to be caused by stable internal base-pairing. The molecule was probed with T2 RNase in neutral (pH 7.5) and acidic (pH 4.5) buffers and only minor structural differences were revealed. One of the helices was found to be susceptible to enzymatic attack by both the single-strand and double-strand specific enzymes. These observations are evidence for the existence of dynamic structural equilibria in 5S rRNA.  相似文献   

18.
How RNA folds.   总被引:9,自引:0,他引:9  
We describe the RNA folding problem and contrast it with the much more difficult protein folding problem. RNA has four similar monomer units, whereas proteins have 20 very different residues. The folding of RNA is hierarchical in that secondary structure is much more stable than tertiary folding. In RNA the two levels of folding (secondary and tertiary) can be experimentally separated by the presence or absence of Mg2+. Secondary structure can be predicted successfully from experimental thermodynamic data on secondary structure elements: helices, loops, and bulges. Tertiary interactions can then be added without much distortion of the secondary structure. These observations suggest a folding algorithm to predict the structure of an RNA from its sequence. However, to solve the RNA folding problem one needs thermodynamic data on tertiary structure interactions, and identification and characterization of metal-ion binding sites. These data, together with force versus extension measurements on single RNA molecules, should provide the information necessary to test and refine the proposed algorithm.  相似文献   

19.
Alongside the well-studied membrane spanning helices, alpha-helical transmembrane (TM) proteins contain several functionally and structurally important types of substructures. Here, existing 3D structures of transmembrane proteins have been used to define and study the concept of reentrant regions, i.e. membrane penetrating regions that enter and exit the membrane on the same side. We find that these regions can be divided into three distinct categories based on secondary structure motifs, namely long regions with a helix-coil-helix motif, regions of medium length with the structure helix-coil or coil-helix and regions of short to medium length consisting entirely of irregular secondary structure. The residues situated in reentrant regions are significantly smaller on average compared to other regions and reentrant regions can be detected in the inter-transmembrane loops with an accuracy of approximately 70% based on their amino acid composition. Using TOP-MOD, a novel method for predicting reentrant regions, we have scanned the genomes of Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The results suggest that more than 10% of transmembrane proteins contain reentrant regions and that the occurrence of reentrant regions increases linearly with the number of transmembrane regions. Reentrant regions seem to be most commonly found in channel proteins and least commonly in signal receptors.  相似文献   

20.
For the purpose of calculation of NMR and other physiocochemical properties of nucleic acids, a computer program in FORTRAN language has been written. This program provides the printout of the Cartesian and cylindrical coordinates of all atoms of a double-stranded helix of nucleic acid in either A, A' or B conformation with any specified base sequence up to 50 nucleotides or longer. In addition, the interatomic distances between any two atoms or distances (with both perpendicular and parallel components) from the centers of the base rings to any atom in the helix can be calculated. This information has been used for the calculation of the ring current effects of the 1H chemical shift of two short helices. Satisfactory agreement has been found in the comparison between the present data and that obtained from model construction and from the table prepared by Arter and Schmidt. The structure of the helix can also be illustrated in graphic form on a Tektronix 4006 CRT terminal. The presentation can be manipulated, such as selection, enlargement, translation and rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号