首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Torulene, a C40 carotene, is the precursor of the end product of the Neurospora carotenoid pathway, the C35 xanthophyll neurosporaxanthin. Torulene is synthesized by the enzymes AL-2 and AL-1 from the precursor geranylgeranyl diphosphate and then cleaved by an unknown enzyme into the C35 apocarotenoid. In general, carotenoid cleavage reactions are catalyzed by carotenoid oxygenases. Using protein data bases, we identified two putative carotenoid oxygenases in Neurospora, named here CAO-1 and CAO-2. A search for novel mutants of the carotenoid pathway in this fungus allowed the identification of two torulene-accumulating strains, lacking neurosporaxanthin. Sequencing of the cao-2 gene in these strains revealed severe mutations, pointing to a role of CAO-2 in torulene cleavage. This was further supported by the identical phenotype found upon targeted disruption of cao-2. The biological function was confirmed by in vitro assays using the purified enzyme, which cleaved torulene to produce β-apo-4′-carotenal, the corresponding aldehyde of neurosporaxanthin. The specificity of CAO-2 was shown by the lack of γ-carotene-cleaving activity in vitro. As predicted for a structural gene of the carotenoid pathway, cao-2 mRNA was induced by light in a WC-1 and WC-2 dependent manner. Our data demonstrate that CAO-2 is the enzyme responsible for the oxidative cleavage of torulene in the neurosporaxanthin biosynthetic pathway.  相似文献   

2.
3.
4.
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation.  相似文献   

5.
Modification of proteins by the addition of poly(ADP-ribose) is carried out by poly(ADP-ribose) polymerases (PARPs). PARPs have been implicated in a wide range of biological processes in eukaryotes, but no universal function has been established. A study of the Aspergillus nidulans PARP ortholog (PrpA) revealed that the protein is essential and involved in DNA repair, reminiscent of findings using mammalian systems. We found that a Neurospora PARP orthologue (NPO) is dispensable for cell survival, DNA repair and epigenetic silencing but that replicative aging of mycelia is accelerated in an npo mutant strain. We propose that PARPs may control aging as proposed for Sirtuins, which also consume NAD+ and function either as mono(ADP-ribose) transferases or protein deacetylases. PARPs may regulate aging by impacting NAD+/NAM availability, thereby influencing Sirtuin activity, or they may function in alternative NAD+-dependent or NAD+-independent aging pathways.  相似文献   

6.
7.
8.
9.
A new locus in the tryptophan pathway of Neurospora crassa   总被引:2,自引:0,他引:2  
  相似文献   

10.
The in vivo regulation of intermediate reactions in the pathway of tryptophan synthesis in Neurospora crassa was examined in a double mutant (tr-2, tr-3) which lacks the functions of the first and last enzymes in the pathway from chorismic acid to tryptophan. The double mutant can convert anthranilic acid to indole and indole-3-glycerol, and the production of these indolyl compounds by germinated conidia was used to estimate the activity of the intermediate enzymes in the pathway. Indole-synthesizing activity was maximal in germinated conidia obtained from cultures in which the levels of l-tryptophan were growth-limiting; the formation of this activity was markedly repressed when the levels of l-tryptophan exceeded those required for maximal growth. d-, 5-methyl-dl-, and 6-methyl-dl-tryptophan were less effective than l-tryptophan, and 4-methyl-dl-tryptophan, tryptamine, and indole-3-acetic acid were ineffective in repressing the formation of indole-synthesizing activity; anthranilic acid stimulated the formation of indole-synthesizing activity. Preformed indole-synthesizing activity was strongly and specifically inhibited by low levels of l-tryptophan; several related compounds were ineffective as inhibitors. These results suggest that, in addition to repression, an end product feedback inhibition mechanism is operative on an intermediate enzyme(s) in tryptophan biosynthesis. The relation of these results to other in vivo and in vitro studies and to general aspects of the regulation of tryptophan biosynthesis in N. crassa are discussed.  相似文献   

11.
12.
Iigusa H  Yoshida Y  Hasunuma K 《FEBS letters》2005,579(18):4012-4016
Previously, we found that intracellular reactive oxygen species (ROS) affect photomorphogenesis in Neurospora crassa. In this study, we investigated the physiological roles of ROS in the response to light and found that the exposure of mycelia to air was important for the light-induced carotenogenesis. Mycelia treated with a high concentration of O(2) gas and H(2)O(2) to release ROS showed an enhancement of light-induced carotenoid accumulation and the expression of gene related to light-inducible carotenogenesis. These results suggested that stimuli caused by the exposure of the mycelia to air containing O(2) gas triggered the light-induced carotenoid synthesis.  相似文献   

13.
14.
15.
16.
17.
Carotenoids and their oxygenated derivatives xanthophylls play essential roles in the pigmentation of flowers and fruits. Wild-type tomato (Solanum lycopersicum) flowers are intensely yellow due to accumulation of the xanthophylls neoxanthin and violaxanthin. To study the regulation of xanthophyll biosynthesis, we analyzed the mutant white-flower (wf). It was found that the recessive wf phenotype is caused by mutations in a flower-specific beta-ring carotene hyroxylase gene (CrtR-b2). Two deletions and one exon-skipping mutation in different CrtR-b2 wf alleles abolish carotenoid biosynthesis in flowers but not leaves, where the homologous CrtR-b1 is constitutively expressed. A second beta-carotene hydroxylase enzyme as well as flower- and fruit-specific geranylgeranyl diphosphate synthase, phytoene synthase, and lycopene beta-cyclase together define a carotenoid biosynthesis pathway active in chromoplasts only, underscoring the crucial role of gene duplication in specialized plant metabolic pathways. We hypothesize that this pathway in tomato was initially selected during evolution to enhance flower coloration and only later recruited to enhance fruit pigmentation. The elimination of beta-carotene hydroxylation in wf petals results in an 80% reduction in total carotenoid concentration, possibly caused by the inability of petals to store high concentrations of carotenoids other than xanthophylls and by degradation of beta-carotene, which accumulates as a result of the wf mutation but is not due to altered expression of genes in the biosynthetic pathway.  相似文献   

18.
Solscheid B  Tropschug M 《FEBS letters》2000,480(2-3):118-122
FKBPs define a subfamily of peptidyl-prolyl cis/trans isomerases (PPIases). PPIases are known to play roles in cellular protein folding, protein interactions and signal transduction. Here we describe NcFKBP22 from Neurospora crassa, a novel type of FKBP. NcFKBP22 is synthesized as a precursor protein with a cleavable signal sequence. In addition to a typical FKBP domain in the amino-terminal part mature NcFKBP22 contains a novel second domain which is unique amongst all known FKBPs. The amino acid composition of this carboxy-terminal domain is highly biased. Secondary structure predictions suggest that this domain may form an amphipathic -helix. The carboxy-terminus of NcFKBP22 is –HNEL, a potential endoplasmic reticulum (ER) retention signal, suggesting that NcFKBP22 is a resident protein of the ER.  相似文献   

19.
20.
In most organisms, circadian oscillators regulate the daily rhythmic expression of clock-controlled genes (ccgs). However, little is known about the pathways between the circadian oscillator(s) and the ccgs. In Neurospora crassa, the frq, wc-1, and wc-2 genes encode components of the frq-oscillator. A functional frq-oscillator is required for rhythmic expression of the morning-specific ccg-1 and ccg-2 genes. In frq-null or wc-1 mutant strains, ccg-1 mRNA levels fluctuate near peak levels over the course of the day, whereas ccg-2 mRNA remains at trough levels. The simplest model that fits the above observations is that the frq-oscillator regulates a repressor of ccg-1 and an activator of ccg-2. We utilized a genetic selection for mutations that affect the regulation of ccg-1 and ccg-2 by the frq-oscillator. We find that there is at least one mutant strain, COP1-1 (circadian output pathway derived from ccg-1), that has altered expression of ccg-1 mRNA, but normal ccg-2 expression levels. However, the clock does not appear to simply regulate a repressor of ccg-1 and an activator of ccg-2 in two independent pathways, since in our selection we identified three mutant strains, COP1-2, COP1-3, and COP1-4, in which a single mutation in each strain affects the expression levels and rhythmicity of both ccg-1 and ccg-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号