首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SALL1 and SALL2 have been identified as two human homologs of the region-specific homeotic gene spalt (sal) of Drosophila, which encodes a zinc finger protein of characteristic structure. SALL1 has recently been found to be mutated in patients with Townes-Brocks syndrome (TBS, OMIM No. 107480). Here we report the isolation and mapping of another sal-like human gene, named SALL1P, on chromosome Xp11.2. This intronless gene closely resembles SALL1 but displays several mutations, suggesting that SALL1P represents a sal-related pseudogene. The high similarity of SALL1P to SALL1 is of considerable importance for mutation analysis of SALL1 in TBS.  相似文献   

2.
While some of the signaling molecules that govern establishment of the limb axis have been characterized, little is known about the downstream effector genes that interpret these signals. In Drosophila, the spalt gene is involved in cell fate determination and pattern formation in different tissues. We have cloned a chick homologue of Drosophila spalt, which we have termed csal1, and this study focuses on the regulation of csal1 expression in the limb bud. csal1 is expressed in limb buds from HH 17 to 26, in both the apical ectodermal ridge and the distal mesenchyme. Signals from the apical ridge are essential for csal1 expression, while the dorsal ectoderm is required for csal1 expression at a distance from the ridge. Our data indicate that both FGF and Wnt signals are required for the regulation of csal1 expression in the limb. Mutations in the human homologue of csal1, termed Hsal1/SALL1, result in a condition known as Townes-Brocks syndrome (TBS), which is characterized by preaxial polydactyly. The developmental expression of csal1 together with the digit phenotype in TBS patients suggests that csal1 may play a role in some aspects of distal patterning.  相似文献   

3.
SALL1 is one of three human homologues of the Drosophila region-specific homeotic gene spalt (sal). Mutations of SALL1 on chromosome 16q12.1 cause Townes--Brocks syndrome (TBS) which is characterized by defects in multiple organ systems including limbs, ears, kidneys and anus. Here, we have analyzed the expression of the mouse homologue of SALL1 (Sall1) during early embryogenesis. Sall1 expression is very prominent in the developing brain and the limbs. Other sites of expression include the meso- and metanephros, lens, olfactory bulbs, heart, primitive streak and the genital tubercle. Hence, Sall1 expression to a large degree reflects the structures affected in human TBS.  相似文献   

4.
SALL1 has been identified as one of now three human homologs of the region specific homeotic gene spalt (sal) of Drosophila, which encodes a zinc finger protein of characteristic structure. Mutations of SALL1 on chromosome 16q12.1 cause Townes-Brocks syndrome (TBS, OMIM no. 107480). In order to facilitate functional studies of this gene in a model organism, we searched for the murine homolog of SALL1. Here we report the genomic cloning, chromosome mapping, and partial expression analysis of the gene Sall1. Sequence comparison, Northern blot hybridization as well as the conserved chromosome location on the homologous mouse chromosome indicate that we have indeed isolated the murine homolog of SALL1.  相似文献   

5.
6.
Hox genes play a central role in the specification of distinct segmental identities in the body of arthropods. The specificity of Hox genes depends on their restricted expression domains, their interaction with specific cofactors and selectivity for particular target genes. spalt genes are associated with the function of Hox genes in diverse species, but the nature of this association varies: in some cases, spalt collaborates with Hox genes to specify segmental identities, in others, it regulates Hox gene expression or acts as their target. Here we study the role of spalt in the branchiopod crustacean Artemia franciscana. We find that Artemia spalt is expressed in the pre-segmental 'growth zone' and in stripes in each of the trunk (thoracic, genital and post-genital) segments that emerge from this zone. Using RNA interference (RNAi), we show that knocking down the expression of spalt has pleiotropic effects, which include thoracic to genital (T-->G), genital to thoracic (G-->T) and post-genital to thoracic (PG-->T) homeotic transformations. These transformations are associated with a stochastic de-repression of Hox genes in the corresponding segments of RNAi-treated animals (AbdB for T-->G and Ubx/AbdA for G-->T and PG-->T transformations). We discuss a possible role of spalt in the maintenance of Hox gene repression in Artemia and in other animals.  相似文献   

7.
8.
The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.  相似文献   

9.
The spalt proteins are encoded by a family of evolutionarily conserved genes found in species as diverse as Drosophila, C. elegans and vertebrates. In humans, mutations in some of these genes are associated with several congenital disorders which underscores the importance of spalt gene function in embryonic development. Recent studies have begun to cast light on the functions of this family of proteins with increasing understanding of the developmental processes regulated and the molecular mechanisms used. Here we review what is currently known about the role of spalt genes in vertebrate development and human disease.  相似文献   

10.
11.
12.
Photoreceptor development begins in the larval eye imaginal disc, where eight distinct photoreceptor cells (R1-R8) are sequentially recruited into each of the developing ommatidial clusters. Final photoreceptor differentiation, including rhabdomere formation and rhodopsin expression, is completed during pupal life. During pupation, spalt was previously proposed to promote R7 and R8 terminal differentiation. Here we show that spalt is required for proper R7 differentiation during the third instar larval stage since the expression of several R7 larval markers (prospero, enhancer of split mdelta0.5, and runt) is lost in spalt mutant clones. In R8, spalt is not required for cell specification or differentiation in the larval disc but promotes terminal differentiation during pupation. We show that spalt is necessary for senseless expression in R8 and sufficient to induce ectopic senseless in R1-R6 during pupation. Moreover, misexpression of spalt or senseless is sufficient to induce ectopic rhodopsin 6 expression and partial suppression of rhodopsin 1. We demonstrate that spalt and senseless are part of a genetic network, which regulates rhodopsin 6 and rhodopsin 1. Taken together, our results suggest that while spalt is required for R7 differentiation during larval stages, spalt and senseless promote terminal R8 differentiation during pupal stages, including the regulation of rhodopsin expression.  相似文献   

13.
14.
15.
Signalling by fibroblast growth factors (FGFs) at the mid-hindbrain boundary (MHB) is of central importance for anteroposterior neural patterning from the isthmic organiser. Graded suppression of FGF signalling by increasing amounts of a dominant negative FGF receptor provides evidence that in addition to anteroposterior patterning, FGF signalling is also involved in patterning along the dorsoventral axis at the MHB. FGF signalling at the MHB is required for the activation of the HH target gene spalt at the MHB. Our results indicate that FGF signalling mediates the competence of the MHB to activate spalt in response to SHH. This interdependence of the two signalling pathways is also found in the outbudding optic vesicle where HH requires functional FGF signalling to activate spalt in the proximal eye region.  相似文献   

16.
17.
Genes of the spalt family encode nuclear zinc finger proteins. In Drosophila melanogaster, they are necessary for the establishment of head/trunk identity, correct tracheal migration and patterning of the wing imaginal disc. Spalt proteins display a predominant pattern of expression in the nervous system, not only in Drosophila but also in species of fish, mouse, frog and human, suggesting an evolutionarily conserved role for these proteins in nervous system development. Here we show that Spalt works as a cell fate switch between two EGFR-induced cell types, the oenocytes and the precursors of the pentascolopodial organ in the embryonic peripheral nervous system. We show that removal of spalt increases the number of scolopodia, as a result of extra secondary recruitment of precursor cells at the expense of the oenocytes. In addition, the absence of spalt causes defects in the normal migration of the pentascolopodial organ. The dual function of spalt in the development of this organ, recruitment of precursors and migration, is reminiscent of its role in tracheal formation and of the role of a spalt homologue, sem-4, in the Caenorhabditis elegans nervous system.  相似文献   

18.
19.
The Drosophila antenna is a highly derived appendage required for a variety of sensory functions including olfaction and audition. To investigate how this complex structure is patterned, we examine the specific functions of genes required for antenna development. The nuclear factors, Homothorax, Distal-less and Spineless, are each required for particular aspects of antennal fate. Coexpression of Homothorax, necessary for nuclear localization of its ubiquitously expressed partner Extradenticle, with Distal-less is required to establish antenna fate. Here we test which antenna patterning genes are targets of Homothorax, Distal-less and/or Spineless. We report that the antennal expression of dachshund, atonal, spalt, and cut requires Homothorax and/or Distal-less, but not Spineless. We conclude that Distal-less and Homothorax specify antenna fates via regulation of multiple genes. We also report for the first time phenotypic consequences of losing either dachshund or spalt and spalt-related from the antenna. We find that dachshund and spalt/spalt-related are essential for proper joint formation between particular antennal segments. Furthermore, the spalt/spalt-related null antennae are defective in hearing. Hearing defects are also associated with the human diseases Split Hand/Split Foot Malformation and Townes-Brocks Syndrome, which are linked to human homologs of Distal-less and spalt, respectively. We therefore propose that there are significant genetic similarities between the auditory organs of humans and flies.  相似文献   

20.
SALL/Sall is a mammalian homolog of the Drosophila region-specific homeotic gene spalt (sal), and heterozygous mutations in SALL1 in humans lead to Townes-Brocks syndrome. We earlier reported that mice deficient in Sall1 die in the perinatal period and that kidney agenesis or severe dysgenesis are present. We have now generated mice lacking Sall2, another Sall family gene. Although Sall2 is expressed mostly in an overlapping fashion versus that of Sall1, Sall2-deficient mice show no apparent abnormal phenotypes. Morphology and gene expression patterns of the mutant kidney were not affected. Mice lacking both Sall1 and Sall2 show kidney phenotypes comparable to those of Sall1 knockout, thereby demonstrating the dispensable roles of Sall2 in embryonic and kidney development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号