首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between molecular and cellular repair from potentially lethal damage (PLD) induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in exponentially growing V79 Chinese hamster cells. We compared the repair processes by an alkaline sucrose sedimentation analysis and a colony formation assay. MNNG-treated cells were exposed to the conditioned medium (CM) from density-inhibited plateau-phase V79 cell cultures, as a post-treatment for the induction of PLD repair. When MNNG-treated cells were postincubated in CM, cell survival continuously increased for 18 h, and during this period, DNA replication was substantially suppressed. CM did not inhibit the rejoining of the single-strand breaks of parental DNA. Rather, parental DNA fragments sedimented more rapidly when postincubated in CM than in fresh medium. These data indicate that cellular recovery from MNNG-induced PLD increases in proportion to the resealing of MNNG-induced single-strand breaks of DNA during the suppression of DNA replication, suggesting that excision repair is involved in the PLD repair process.  相似文献   

2.
Quiescence in 9L cells and correlation with radiosensitivity and PLD repair   总被引:4,自引:0,他引:4  
The onset of quiescence, changes in X-ray sensitivity, and changes in capacity for potentially lethal damage (PLD) repair of unfed plateau-phase 9L44 cell cultures have been systematically investigated. The quiescent plateau phase in 9L cells was the result of nutrient deprivation and was not a cell contact effect. Eighty-five to 90% of the plateau-phase cells had a G1 DNA content and a growth fraction less than or equal to 0.15. The cell kinetic shifts in the population were temporally correlated with a developing radioresistance, which was characterized by a larger shoulder in the survival curve of the quiescent cells (Dq = 5.71 Gy) versus exponentially growing cells (Dq = 4.48 Gy). When the quiescent plateau-phase cells were refed, an increase in radiosensitivity resulted which approached that of exponentially growing 9L cells. Delayed plating experiments after irradiation of exponentially growing cells, quiescent plateau-phase cells, and synchronized early to mid-G1-phase cells indicated that while significant PLD repair was evident in all three populations, the quiescent 9L cells had a higher PLD repair capacity. Although data for immediate plating indicated that 9L cells may enter quiescence in the relatively radioresistant mid-G1 phase, the enhanced PLD repair capacity of quiescent cells cannot be explained by redistribution into G1 phase. When the unfed quiescent plateau-phase 9L cells were stimulated to reenter the cell cycle by replating into fresh medium, the first G1 was extended by 6 h compared with the G1 of exponentially growing or refed plateau-phase 9L cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Studies on X-ray sensitive mutants of Saccharomyces cerevisiae (Benathen 1973, Benathen and Beam 1977) show that the XS6, XS8 and XS9 genes are not only involved in the repair of X-ray-induced damage but also in the repair of U.V.-induced damage. Analysis of the U.V. sensitivity of multiple xs mutants indicates the participation of three repair pathways which differ from excision repair. Under conditions which can influence repair, such as plating of the U.V.-irradiated cells in the presence of caffeine, followed or not by hyperthermic incubation, the wild type strain shows a diphasic survival curve, consisting of an exponential component for low doses and a sigmoidal one for higher doses. Comparison with the survival curves obtained for the sensitive mutants suggests that the first component of the wild type survival curve corresponds to the inhibition of the XS6 and XS8 gene products while the appearance of a radio-resistant fraction in the population relies on the induction of another repair pathway. A sequential model of repair with two branching points is proposed to explain the results.  相似文献   

4.
HeLa S3 cells were sensitized to the lethal action of 220-kV X rays by partially replacing the thymidine in their DNA with 5-bromodeoxyuridine (BrdU). To examine the expression of and recovery from potentially lethal radiation damage (PLD), both BrdU-grown and control cells were treated with 4 mM caffeine for increasing times up to 2 days, either immediately after irradiation or after increasing delays up to 28 h. When the same dose of X rays (3 Gy) was applied to BrdU-grown and control cells, the difference in survival that is found in the absence of caffeine disappeared after about 30 h of incubation in its presence; when isosurvival doses were applied (BrdU-grown cells, 2.5 Gy; control cells, 4 Gy), the control cells suffered more killing. When treatment with caffeine was delayed for progressively longer times after both groups of cells received 3 Gy, the control cells achieved a higher level of survival. These results indicate that the increased radiation sensitivity of cells containing BrdU derives from a decreased ability to repair PLD.  相似文献   

5.
A comparison of gamma-ray dose fractionation effects was made using plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts in an attempt to simulate basically similar populations of cells that differ primarily in their turnover rates. The status of cell populations with respect to their turnover rates may be an important factor influencing dose fractionation effects in early- and late-responding tissues. In this cell culture system, the rate of cell turnover was approximately three times higher for the plateau-phase transformed cultures. While the single acute dose survival curves for log-phase cells were indistinguishable, there were significant differences between the survival curves for plateau-phase cultures of the two cell types. These differences were qualitatively similar to the differences recently postulated for the survival of target cells governing early and late tissue responses. Both cell lines had a similar capacity for repair of sublethal damage, but untransformed cells had a much greater capacity to repair potentially lethal damage in plateau phase. Further, untransformed plateau-phase cultures were much more sensitive to a radiation-induced G1 (or G0 to G1) delay than transformed cultures. Multifraction survival curves were determined for both cell lines for doses per fraction ranging from 9.0 to 0.8 Gy, and from these isoeffect curves of log total dose versus dose per fraction were derived. The isoeffect curve for the slowly cycling, untransformed cells was found to be appreciably steeper than that for the more rapidly cycling transformed cells, a finding consistent with previously reported differences in dose fractionation isoeffect curves for early- and late-responding tissues in vivo.  相似文献   

6.
Clonogenic survival response to 254-nm ultraviolet light was measured in 2 strains of repair-proficient normal human fibroblasts and 4 strains of xeroderma pigmentosum (XP) fibroblasts belonging to complementation groups A, C, D and variant. In all strains except XPA, cells irradiated in plateau phase and subcultured immediately were much more resistant to the lethal effect of UV than cells irradiated in the exponential phase of growth. Typically, 10-20% of plateau-phase cells were extremely resistant. When the cultures were held in plateau phase for 24 h after irradiation and before subculture, there was a further enhance of survival. By use of a UV-specific endonuclease assay, no difference was found in the number of DNA lesions induced in exponentially growing and plateau cultures by the same dose of UV light. Thus plateau-phase cells appear to be more efficient in their DNA-repair capability than cells in exponential growth. XP group A cells were uniquely found to be deficient in the processes which lead to plateau-phase resistance. Since plateau-phase repair was not lacking in XP groups C, D and variant, it may be related to a DNA-repair process different from that which is responsible for the overall UV sensitivity of these cells.  相似文献   

7.
Abstract. A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. an examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. the thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; (i) during exposure to electric field 24 hr before U.V. irradiation; (ii) 24 hr after U.V. irradiation; and (iii) up to 48 hr continuously after U.V. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

8.
Repair of potentially lethal damage (PLD) was investigated in a gamma-ray-sensitive Chinese hamster cell mutant, XR-1, and its parent by comparing survival of plateau-phase cells plated immediately after irradiation with cells plated after a delay. Previous work indicated that XR-1 cells are deficient in repair of double-strand DNA breaks and are gamma-ray sensitive in G1 but have near normal sensitivity and repair capacity in late S phase. At irradiation doses from 0 to 1.0 Gy (100 to 10% survival), the delayed- and immediate-plating survival curves of XR-1 cells were identical; however, at doses greater than 1.0 Gy a significant increase in survival was observed when plating was delayed (PLD repair), approaching a 20-fold increase at 8 Gy. Elimination of S-phase cells by [3H]thymidine suicide dramatically increased gamma-ray sensitivity of plateau-phase XR-1 mutant cells and reduced by 600-fold the number of cells capable of PLD repair after a 6-Gy dose. In contrast, elimination of S-phase cells in plateau-phase parental cells did not alter PLD repair. These results suggest that the majority of PLD repair observed in plateau-phase XR-1 cells occurs in S-phase cells while G1 cells perform little PLD repair. In contrast, G1 cells account for the majority of PLD repair in plateau-phase parental cells. Thus, in the XR-1 mutant, a cell's ability to repair PLD seems to depend upon the stage of the cell cycle at which the irradiation is delivered. A possible explanation for these findings is discussed.  相似文献   

9.
Conditioned medium from density-inhibited V79 Chinese hamster cell cultures, given as a post-treatment to UV-irradiated homologous cells, was demonstrated to reduce the lethal action of ultraviolet light by temporarily blocking DNA replication. Since the increased survival was not affected by various nontoxic concentrations of caffeine, such protective effect would be attributable to the prolonged intervention of excision repair before DNA replication during the post-treatment period. The influence of conditioned medium on the UV-induced mutation at the ouabain-resistance locus was also examined and a significant decrease in mutation frequency was noted. The observed reduction in killing and mutation as a result of post-incubation in conditioned medium, which delays DNA replication, would be interpreted as evidence that conditioned medium provides a longer period of time for an error-free excision-repair process, leaving lesion in DNA available for error-prone post-replication repair.  相似文献   

10.
Summary The Stationary or Plateau-Phase of commonly used rodent cell lines like the V79 are often assumed to be quiescent (non-mitotic). An analysis of cell turnover in V79 plateau-phase cultures through BrUdR-incorporation combined with FUdR-block and light exposure (S-phase cytocide) revealed such cultures to be in a state of kinetic equilibrium. Even when the state of maximal permissible density was acquired, at least 50% of the population of cells were cycling within the time for one population doubling. Attempts at holding the cells from cycling (through nutrient-depletion and serum-privation) were unsuccessful, although the turnover-rate was reduced. Our assays for X-irradiated clonogenic survivors after attempted holding combined with delayed plating (DP) showed differences in the survival curves for exponentially growing and confluent cultures. Elimination of cycling cells by S-phase cytocide removed these differences. Since a significant fraction of plateau-phase cells are not mitotically quiescent (Q), one must eliminate the proliferating (P) fraction if one wishes to examine the PLDR of the Q cells. For V79 cells, removal of the P cells eliminates the higher survival (usually interpreted as Q cell PLDR) of plateau-phase cells.  相似文献   

11.
T M Koval 《Radiation research》1988,115(3):413-420
TN-368 lepidopteran insect cells display a pronounced resistance to the lethal effects of ionizing radiation and exhibit superior DNA repair capabilities. When a TN-368 cell population entering stationary growth phase is irradiated with 137Cs gamma rays and then incubated for several hours before cell dilution and plating for colony formation, the surviving fraction is increased several-fold over cells diluted and plated immediately after irradiation. Similarly, the survival of cells plated immediately following the second of two equivalent doses separated by several hours is greater than the survival of cells plated immediately following a single dose equal to the sum of the split doses. Both processes exhibit similar biphasic repair kinetics and reach maximal levels by 6 h. The phenomena appear initially to be analogous to confluent-holding and split-dose recovery as described for mammalian cells. However, the survival levels obtained for doses of 61-306 Gy after allowing for these recovery processes to occur are quite high and greatly exceed survival levels for all but relatively low doses less than 50 Gy. For example, while the survival of cells irradiated with 150 Gy is near 0.15, the survival of cells receiving 306 Gy in two equivalent split doses is approximately 0.77. Even if damage induced by the first of the split doses was completely repaired, it might be expected that the survival would be near the level of the second dose alone, or near 0.15. Instead the survival is approximately five times greater, suggesting that the first split dose stimulated a repair system not present in unirradiated cells. The situation for confluent-holding recovery is similar to that for split-dose recovery.  相似文献   

12.
Walter Harm   《Mutation research》1973,20(3):301-311
The survival of UV-irradiated phage T1 is much lower in excision repair-deficient than in excision repair-proficient E. coli cells, due to lack of “host cell reactivation” (HCR). An additional decrease in phage survival occurs when repair-deficient (HCR) host cells have been exposed to UV doses from 3000–10 000 erg mm−2 of 254 nm UV-radiation prior to infection. The observed effect is attributed to loss of a minor phage recovery process, which requires neither the bacterial excision repair nor the bacterial REC repair system. This type of recovery is little affected by caffeine or acriflavine at concentrations that preclude HCR completely. Its full inhibition by UV-irradiation of the cells requires an approximately 8 times larger dose than complete inhibition of HCR.

In heavily preirradiated cells, the T1 burst size is extremely small and multiplicity reactivation is considerably less extensive than in unirradiated cells. Presumably the survival of singly infecting T1 in these cells reflects absence of any type of repair. The observed phage sensitivity and shape of the curve are compatible with the expectation for completely repairless conditions. The mechanism underlying the minor recovery is not known; theoretical considerations make a phage REC repair mechanism seem likely.  相似文献   


13.
Replicative bypass repair of UV damage to DNA was studied in wide variety of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP)), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthetized after irradiation with 10 J/m2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionall, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimidine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability.  相似文献   

14.
Tonicity shock or caffeine postirradiation treatment makes evident fast-type potentially lethal damage (PLD). Caffeine expresses fast-type PLD more efficiently than tonicity shock in X-irradiated B-16 mouse melanoma cells, compared with V79 Chinese hamster cells. The survival curves of thermal neutrons for either V79 or B-16 cells exhibit no shoulder. Neither V79 nor B-16 cells show the sublethal damage (SLD) repair of thermal neutrons. Caffeine-sensitive fast-type PLD repairs exist in X-irradiated B-16 cells, as well as V79 cells. The fast-type PLD repair of B-16 cells exposed to thermal neutrons alone is rather less than that of X-irradiated cells. Furthermore, an extremely low level of fast-type PLD repair of B-16 cells with 10B1-paraboronophenylalanine (BPA) preincubation (20 hours) followed by thermal neutron irradiation indicated that 10B(n,alpha)7Li reaction effectively eradicates actively growing melanoma cells. The plateau-phase B-16 cells are well able to repair the slow-type PLD of X-rays. However, cells can not repair the slow-type PLD induced by thermal neutron irradiation with or without 10B1-BPA preincubation. These results suggest that thermal neutron capture therapy can effectively kill radioresistant melanoma cells in both proliferating and quiescent phases.  相似文献   

15.
M Fox 《Mutation research》1974,24(2):187-204
The effect of post-treatment with caffeine on the survival of a number of cell lines after UV-irradiation has been studied. The mouse lymphoma cell lines P388 and L5178YS were sensitized by caffeine but only after UV doses of 50 erg/mm2 and above. V79 cells also showed sensitization by caffeine but CHO cells and two cell lines YS and YR derived from Yoshida sarcoma of rats, sensitive and resistant to UV radiation, respectively, showed no effect.P388 and V79 cells were both mutable by UV, and caffeine, when studied at a single expression time (42–48 h) and at a single dose level (0.5 M and 0.75 M, respectively) suppressed the UV-induced mutation frequency in both cell lines. L51788YS cells although sensitized by caffeine showed no increase in frequency of thymidine-resistant (TdRr) colonies when irradiated with UV.On more detaled examination, caffeine was found to delay the expression of UV-induced mutations inV79 cells, and the delay was dependent on the dose of caffine used. The effect on expression time was less when caffeine was present 0–48 h than when it was present throughout the post-irradiation incubation period. Similar results were obtained in P388 cells.The data are discussed in relation to those of other workers and to the concept that caffeine inhibits an error prone post-replication repair process in mammalian cells  相似文献   

16.
The effect of the DNA polymerase inhibitor beta-arabinofuranosyladenine (araA) on radiation-induced damage was studied at the cell survival and chromosome level in unfed plateau-phase cultures of Chinese hamster ovary cells. At the cell survival level postirradiation treatment with araA fixed a form of radiation-induced potentially lethal damage, termed alpha-PLD. In the absence of araA treatment, repair of PLD resulted in the formation of the survival curve shoulder in immediately plated cells and in the increase in survival observed after delayed plating. The repair kinetics observed after delayed plating of plateau-phase cells or after delayed administration of 500 microM araA were similar, suggesting that both protocols assay similar lesions. AraA-mediated fixation reached a plateau at concentrations higher than 500 microM, indicating complete fixation of alpha-PLD. At the cytogenetic level, postirradiation treatment with araA at concentrations higher than 500 microM caused a complete inhibition of chromosome repair, as scored by premature chromosome condensation. In the absence of araA, the linearity of the dose-effect relationship for chromosome fragmentation obtained immediately after irradiation was preserved even after long repair times. The repair kinetics of chromosome damage measured in cells held postirradiation in the plateau phase were the mirror image of the repair kinetics for alpha-PLD. The half-time was 1 h in both cases and repair reached a plateau after about 4-6 h. AraA-mediated repair inhibition of chromosome damage was reversible, and a decrease in residual chromosome damage was observed after post-treatment incubation in araA-free conditioned medium. This persistent chromosome damage increased with increasing araA concentration and, as with PLD fixation, reached a plateau at about 500 microM. These results suggest that repair and araA-mediated fixation of alpha-PLD have their counterparts at the chromosome level as indicated by the similar repair kinetics and inhibition/fixation characteristics obtained for alpha-PLD and chromosome damage. This relationship implies a correlation between repair at the DNA and the chromosome level and suggests that DNA polymerization is required for the repair of chromosome damage.  相似文献   

17.
After long postirradiation incubation periods, the residual frequency of prematurely condensed chromosome fragments following X-ray exposure of noncycling diploid human fibroblasts was found to be correlated with the frequency of chromosome aberrations observed under identical treatment conditions when the cells were subcultured and scored after they reached mitosis. Over a wide range of doses, the proportion of such cells without aberrations at their first metaphase was not significantly different from the proportion able to form macroscopic colonies. Further, the rate of rejoining of interphase chromosome breaks was the same as the rate of increase in survival due to the repair of potentially lethal damage (PLD). These results suggest that there is a one-to-one correspondence between the initial breakage and rejoining of G0 chromosomes and the induction and repair of PLD measured by delayed plating from plateau-phase cultures of these cells.  相似文献   

18.
Experiments on the effect of ultraviolet (UV) light on the survival of vegetative Dictyostelium discoideum cells indicate that this is a relatively UV-resistant organism. Several factors suggest the presence of some type of repair process. Experiments to test for liquid-holding recovery and simple photoreactivation yielded negative results. Acriflavine and caffeine were utilized to possibly interfere with dark repair. Acriflavine produced no UV sensitization, but caffeine did cause a concentration-dependent decrease in survival of irradiated cells. When UV-irradiated cells were illuminated with photoreactivating light while suspended in caffeine, the survival increased above that for cells treated with caffeine alone, suggesting an overlap between lesions repaired by photorepair and dark repair. Growth experiments showed that UV light induced a dose-dependent division delay, followed by a period of retarded growth characterized by the presence of a constant fraction of nonviable cells in the irradiated population. The delayed exposure of cells to caffeine after irradiation showed that the magnitude of the caffeine sensitization diminished throughout the division-delay period. An action spectrum indicated probable nucleoprotein involvement in the induction of division delay. UV light retarded ribonucleic acid and protein synthesis and temporarily blocked deoxyribonucleic acid synthesis. However, synthesis of all three accelerated prior to the end of the division-delay period and then closely paralleled the increase in cell number.  相似文献   

19.
In barley ( Hordeum vulgare L.) and grass pea ( Lathyrus sativus L.), caffeine, an inhibitor of DNA repair activity, and Na2ethylenediaminetetraacetate, an inhibitor of DNA-endonucleases, sharply decreased the excision repair of pyrimidine dimers induced in DNA by ultraviolet irradiation. An inhibitor of RNases, diethylpyro-carbonate, did not inhibit the process of excision, and in one experiment it even enhanced excision. Caffeine markedly increased the frequency of mutations and inhibited the growth of seedlings after UV-radiation. Such enhancement was greater with the higher UV fluence. Results of chemical inhibition were further confirmed by the suppression of repair by low temperatures: the frequency of chromatid aberrations induced with propyl methanesulfonate was increased more than 3 times and chromatid aberrations 1.5 times. Evidence for participation of repair enzymes in the modification of mutation processes was also obtained in the experiments which combined γ-irradiation and treatment with propyl methanesulfonate. Conditions favouring repair activity caused a drastic reduction in the frequency of aberrations, whereas with conditions preventing enzyme function the mutation frequency increased. In one of the experiments of this series we were able to demonstrate, with identical mutagenic treatment, that by changing post-mutagen conditions (wetting and drying of seeds, storage after mutagenic treatment) it was possible to alter the mutation frequency and to obtain below-additive, additive and synergistic mutational response.  相似文献   

20.
3 wild-type strains of E. coli, namely K12 AB2497, B/r WP2 and 15 555-7v proficient in excision and post-replication repair, differ markedly in their UV resistance. To elucidate this difference, the influence was investigated of induction by application of inducing fluence (IF) before lethal fluence (LF) on repair processes after LF. In cells distinguished by low UV resistance (E. coli 15 555-7; E. coli B/r WP2), dimer excision was less complete in cultures irradiated with IF + LF than in cultures irradiated with LF only. The highly resistant E. coli K12 AB2497 performed complete excision both after IF + LF or after LF alone. All 3 types of cell survived better after IF + LF than after LF only. Because, in most strains so far investigated, the application of IF reduced dimer excision and increased survival, dimer excision per se does not appear important for survival.We conclude that the rate and completeness of dimer excision can serve as a measure of efficiency of the excision system whose action is necessary for repair of another lesion. Cells of all investigated strains could not resume DNA replication and died progressively when irradiated with LF and post-incubated with chloramphenicol (LF CAP+). Thus, it appears that inducible proteins are necessary for repair in all wild-type E. coli cells give with potentially lethal doses of UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号